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Abstract16

Plant sizes within populations often exhibit multimodal distributions, even when17

all individuals are the same age and have experienced identical conditions. To18

establish the causes of this we created an individual-based model simulating the19

growth of trees in a spatially-explicit framework, parameterised using data from20

a long-term study of forest stands in New Zealand. First we demonstrate that21

asymmetric resource competition is a necessary condition for the formation of22

multimodal size distributions within cohorts. In contrast, the legacy of small-scale23

clustering during recruitment is transient and quickly overwhelmed by density-24

dependent mortality. Complex multi-layered size distributions are generated when25

established individuals are restricted in the spatial domain within which they can26

capture resources. The number of modes reveals the effective number of direct27

competitors, while the separation and spread of modes are influenced by distances28

among established individuals. An unexpected emergent outcome was the produc-29

tion of U-shaped size-mortality relationships, an enigmatic pattern often observed30

in natural forests. This occurred in the simulations because of the high mainten-31

tance costs of large individuals, which made them sensitive to even minor compet-32

itive effects. Asymmetric competition within local neighbourhoods can therefore33

generate a range of complex size distributions.34

Keywords35

Asymmetric competition; bimodality; individual-based model; forests; Fuscospora36
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Introduction38

Individual organisms within populations vary greatly in size. A description of the39

distribution of sizes is a common starting point for many demographic studies [e.g.40

1, 2, 3]. This is especially the case for plants, where size distributions are often41

considered to convey information regarding the stage of development of a stand or42

the processes occurring within [4, 5]. In the absence of asymmetric competition or43

size-related mortality, the sizes of individuals within an even-aged cohort should be44

approximately normally-distributed around a single mode, allowing for some vari-45

ation in growth rate. More commonly a left-skew is observed during early stages46

of cohort development. This is attributed to smaller-sized individuals receiving47

insufficient resources to maintain growth, ultimately increasing their likelihood of48

mortality [6, 7]. Size-thinning thereafter reduces the degree of skewness [8, 9, 10]49

such that the distribution converges on a common maximum size [2]. Finally,50

as individuals die through disturbance or senescence, and recruitment into lower51

size classes occurs, populations shift to a size distribution referred to as reverse52

J-shaped, where a high density of of small individuals is combined with a small53

number of large dominants. This is a common pattern in forests, especially those54

dominated by shade-tolerant species which can persist in small size classes [e.g.55

11, 12].56

A range of statistical models exist to capture these transitions in size distribu-57

tions [5, 13]. Nevertheless, such simple models are unable to capture the behaviour58

of many systems. Multimodality of size distributions is widely observed in nature59

[2, 8, 14]. This is particularly true of plant populations [see Table 1 in 15], even60

when all individuals are known to have recruited simultaneously [16]. The preva-61
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lence of multimodality is likely to have been underestimated due to a failure to62

apply appropriate statistical tests [e.g. 17]. In some studies, even when multi-63

modal distributions are observed, they are overlooked or dismissed as anomalous64

[e.g. 9, 13, 18].65

When larger organisms monopolise access to resources it increases the asym-66

metry of competition among individuals [19, 20]. Small individuals face combined67

competition from all neighbours larger than themselves, whereas large individuals68

are unaffected by their smaller neighbours. This is particularly likely to be the69

case for light competition among vascular plants, where taller stems capture a70

greater proportion of available radiation and determine access for those beneath71

[21]. As larger individuals can thereby maintain higher growth rates, incipient72

bimodality will be reinforced [14], at least until light deprivation causes mortality73

among smaller individuals [e.g. 1, 22, 23]. Stand development models are able to74

generate bimodal patterns when resources for growth become limited [24, 25, 26].75

Nevertheless, though the potential for bimodality to arise from competitive inter-76

actions is well-known, previous models have only been able to reproduce it within77

a narrow range of parameters [24, 25], leading to the conclusion that it is the least78

likely cause of bimodality in natural size distributions [14]. A range of alterna-79

tive mechanisms might give rise to multimodality, including abiotic heterogeneity80

whereby large stem sizes are indicative of favourable environmental conditions [27],81

or sequential recruitment of overlapping cohorts [14]. Finally, the initial spatial82

pattern of recruits may itself create complex variation in the sizes of individuals.83

In this study we argue that instead of being unusual or aberrant, multimodal-84

ity is an expected outcome whenever asymmetries in competition among indi-85

viduals occur in sessile species. We sought to determine the conditions under86
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which multimodal size distributions form in spatially-structured populations using87

an individual-based modelling approach. Such models have the potential to de-88

rive new insights into fundamental ecological processes as they often demonstrate89

emergent properties which cannot be predicted from population-level approaches90

[28]. In order to parameterise our models we used a long-term dataset of 250 plots91

in New Zealand in which the sizes of over 20 000 Fuscospora cliffortioides (Hook.92

f.) Heenan & Smissen (≡ Nothofagus solandri var. cliffortioides (Hook. f.) Poole)93

trees have been monitored since 1974 [10, 29, 30]. These data are used to obtain94

plausible parameters for our simulation model, which is then employed to explore95

the causes of multimodality in virtual populations.96

Our predictions were that (a) the size distribution of individuals would carry a97

long-term signal of the spatial patterns at establishment, and that (b) asymmetries98

in competitive ability would increase the degree of bimodality, which once estab-99

lished would strengthen through time, until resource deprivation removed weaker100

competitors from the population. Finally, we aimed to test whether (c) manipu-101

lating the distance and number of competitors within local neighbourhoods would102

generate variation in the number and positions of modes within size distributions.103

Through this work we demonstrate that complex size distributions with multiple104

modes can be generated within cohorts even in homogeneous environmental space105

and when individuals are initially arranged in a regular grid. We show that mul-106

timodality is not a transient phase, but is maintained for the projected lifespan of107

a cohort. Finally, we show that the eventual size reached by any individual de-108

pends upon interactions with others in its immediate neighbourhood throughout109

its lifetime.110
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Materials and methods111

The simulation model112

All parameters used in the text are summarised in Table 1. The growth model113

is derived from a basic energy conservation principle. We assume throughout114

that resources in the model refer to light (and therefore carbohydrates acquired115

through photosynthesis), though in principle the model could be extended to other116

resources with appropriate parameterisation. Recruitment and age-related senes-117

cence are not included in the model. The resources E that an individual acquires118

in a unit of time t are distributed between the resources used to increase its size119

Mg and all other metabolic and maintenance costs Mm. This is expressed math-120

ematically as a general energy budget E = Mg + Mm. Assuming that resource121

intake scales with biomass m as Ei ∝ m3/4 [31, 32], and a linear relation between122

maintenance costs and biomass Mm ∝ m, we can write a simple individual growth123

rate equation124

dm

dt
= am3/4 − bm (1)

where a and b are constants and the units are chosen such that an increase of one125

unit in biomass requires one unit of resources. A mathematically equivalent model,126

but with slightly different interpretation, has been proposed previously [33, 21, 34].127

Equation 1 describes the potential growth rate of an individual in the absence of128

competition.129

The potential rate of energy uptake of an individual is reduced when it competes130

with neighbours and thus they share the available light. In order to take this into131
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account the growth rate in the presence of competition can be expressed as132

dm

dt
= am3/4 − bm−

∑
j

I(m,mj, dj) (2)

where Ij represents the reduction in biomass growth of a given individual due to133

competition with another individual j of mass mj and at a distance dj from the134

focal tree. The competitive response is obtained by summing Ij over all interacting135

neighbours. We only took pairwise interactions into account, summed across all136

interactions for each individual. This maintained computational efficiency of the137

simulations [35]. An individual died if its maintenance needs Mm were not met,138

i.e. if am3/4 −
∑

j I(m,mj, dj) < bm.139

Spatially explicit interactions among individuals were modelled with a circular140

zone of influence (ZOI) where A represents the potential two-dimensional space141

within which a plant acquires resources in the absence of competition. Resource142

competition between an individual i and its neighbour j is defined as occurring143

when Ai overlaps with Aj. Within the area of overlap, A(I), resources are dis-144

tributed among the two individuals, but not necessarily equally. A larger indi-145

vidual (greater m) will be a stronger competitor, for example by over-topping in146

light competition, but also potentially through directing greater investment into147

below-ground resource capture [36, 37]. To incorporate asymmetric competition148

we define fm(m,mj) as being the proportion of resources E that an individual of149

size m obtains from the area within which it interacts with another individual of150

size mj. Assuming homogeneous resource intake within A, then E is proportional151

to A(o) + fm(m,mj)A
(I), where A(o) is the area within which no interaction occurs152

(A− A(I)).153
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Since in the absence of competition E = am3/4, competition will reduce E as154

follows:155

E = am3/4 − (1− fm(m,mj))A
(I) (3)

and156

I(m,mj, dj) = (1− fm(mj))A
(I)
j (4)

The explicit functional form for asymmetric competition is fm(m,mj) = mp

mp+mp
j
.157

When p = 0 the resources in the zone of overlap are divided equally, irrespective158

of each individual’s size. If p = 1 then each individual receives resources in pro-159

portion to its size, and if p > 1 then larger individuals gain a disproportionate160

benefit given their size. This differs from a previous formulation [38], though their161

terminology of competitive interactions can be matched to this work as absolute162

symmetry (p = 0), relative symmetry (p = 1) and true asymmetry (p > 1). The163

shape of the competition kernel is identical in all cases.164

This mathematical framework was used to create a spatially-explicit simulation165

model in which the growth and interactions among large numbers of individuals166

could be assessed simultaneously.167

Model fitting168

To obtain realistic parameters for the simulation model we utilised data from169

monospecific Fuscospora cliffortioides forests on the eastern slopes of the Southern170

Alps, New Zealand. F. cliffortioides is a light-demanding species which recruits as171

cohorts in large canopy gaps, and has a lifespan that seldom exceeds 200 years. The172
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data consisted of records from 20 330 trees situated in 250 permanently marked173

plots that randomly sample 9 000 ha of forests. Each plot was 20×20 m in size. In174

the austral summer of 1974–75 all stems >3 cm diameter at breast height (dbh)175

were tagged and dbh recorded. The plots were recensused during the austral176

summers of 1983–84 and 1993–94. Only stems present in more than one census177

were included. Previous work on this system has confirmed a dominant role for178

light competition in forest dynamics [21]. See [10, 21] for further details.179

We tested each plot for multimodality by fitting a finite mixture model of one,180

two and three normal distributions (see Appendix 1). We employed an expectation-181

maximisation (EM) algorith [39] within the R package FlexMix 2.3-4 [40] and182

utilised the Bayesian Information Criterion (BIC) to decide whether each size183

distribution was unimodally or multimodally distributed.184

In order to fit the simulation model to the data we estimated the mass m of the185

trees by allometric relation dbh = Cdbhm
3/8 [31, 41, 42], where Cdbh was taken as186

a free parameter. A linear relation between dbh and radius of the zone of influence187

was chosen, and a high degree of asymmetric competition (p = 10). The latter188

improved overall fit of the models, indicating a role for asymmetric competition189

in driving stand dynamics. For each of 250 plots we began the simulation model190

with the observed stem sizes from 1974 attached to points randomly distributed191

in space. The simulation was run for 19 model years. A Monte Carlo search192

algorithm was employed to find values of a and b which gave the best fit to the193

observed individual growth rates with Pearson’s χ2, averaged across the ensemble194

of simulations. Note that the model was fit to the growth rates of individual stems195

based on repeated measurements, rather than stand-level properties such as size196

distributions.197
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Having obtained suitable values for a and b we performed simulations to com-198

pare the size distributions as predicted by the model (assuming random stem199

positions) with the empirical distributions observed in the data set. These were200

initiated using size distributions from stands in which the mean stem diameter201

was small (d̄ < 15 cm), then run until the mean reached a medium (15 cm ≤ d̄ <202

22 cm) or large (d̄ ≥ 22 cm) stem size. Estimates of size-dependent mortality rate203

were also obtained and compared with empirical outputs as in [10]; see Appendix204

2. This provides an independent evaluation of model performance as mortality205

rates were not used to parameterise the model.206

Exploring multimodality in size structure207

The simulator with fitted parameters as described above was used to explore the208

factors which cause multimodal size distributions to form. We tracked the devel-209

opment of size structures in simulated stands with differing initial spatial patterns210

and symmetry of competition. In these simulations all individuals were of identical211

initial size.212

First 2100 spatial patterns were generated, each containing a distribution of213

points with x and y co-ordinates in a virtual plot of 20×20 m. Equal numbers214

patterns were clustered, random and dispersed. Random patterns were produced215

using a uniform Poisson process with intensity λ = 0.05 points m−2. Clustered216

patterns were created using the Thomas process. This generated a uniform Poisson217

point process of cluster centres with intensity λ = 0.005. Each parent point was218

then replaced by a random cluster of points, the number of points per cluster being219

Poisson-distributed with a mean of 10, and their positions as isotropic Gaussian220
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displacements within σ = 1 from the cluster centre. Dispersed patterns were221

produced using the Matern Model II inhibition process. First a uniform Poisson222

point process of initial points was generated with intensity λ = 0.06. Each initial223

point was randomly assigned a number uniformly distributed in [0,1] representing224

an arrival time. The pattern was then thinned by deletion of any point which225

lay within a radius of 1.5 units of another point with an earlier arrival time.226

All patterns were generated in R using the spatstat package [43]. Each pattern227

contained roughly 500 points (clustered N = 501.3±2.7, random N = 501.7±0.8,228

dispersed N = 488.0± 0.7). The slightly lower number of points in the dispersed229

pattern reflects the inherent difficulties in generating a dense pattern with a highly-230

dispersed structure and has no qualitative effect on later analyses. Although the231

density within starting patterns was approximately a quarter of that observed in232

the empirical data, initial density has a limited effect on final outcomes since its233

main effect is to reduce the time until points begin to interact [44], and lower point234

densities increased computational speed, allowing for greater replication.235

A number of further patterns were generated to explore the influence of specific236

parameters. First, a regular square grid was used with a fixed distance of 1.5 or237

3 m between individuals. Next, groups of individuals were created in which all238

individuals within groups were 3 m apart, but with sufficient distance between239

groups that no cross-group interactions could take place. Groups contained either240

two individuals (pairs), three individuals in a triangular arrangement (triads) or241

four individuals in a square arrangement (tetrads). The total starting population242

in each pattern was approximately 7500 individuals.243

We ran simulations of the spatially explicit individual-based model, varying244

the degree of asymmetric competition p. The points generated above became245
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individual trees represented as circles growing in two-dimensional space. Each246

individual was characterised by its mass m and co-ordinates. The area A of the247

circle representing the potential space for resource acquisition was given by cA =248

am3/4 where c is a proportionality constant. The system was developed in time249

increments δt which nominally correspond to 10 weeks (for simplicity there is no250

seasonal pattern of growth in the model). An individual’s growth is given by:251

δmi =

[
am

3/4
i − bmi −

∑
j

mp
j

mp
i +mp

j

cA
(I)
j

]
δt (5)

In each Monte Carlo iteration individuals mi were selected at random and their252

size updated. In order to model mortality, an individual was removed from the253

simulation if [am
3/4
i − bmi −

∑
j

mp
j

mp
i+mp

j
A

(I)
j ] < 0.254

The predicted size distribution and mortality rate of clumped, random and255

dispersed starting patterns were obtained from ensemble averages of 700 simula-256

tions corresponding to the point processes generated above. m was a continuous257

variable but in order to derive the size distribution, growth and death rates we cal-258

culated size frequencies based on 10 kg biomass bins. Since the death rate changes259

through time due to alterations in the size structure of the community, we present260

the average death rate for each size class across all time steps in simulations, which261

run for 460 model years (at which point only a few very large stems remain). This262

allows sufficient resolution for figures to be presented as effectively continuous re-263

sponses rather than histograms, and is equivalent to a landscape-scale aggregation264

of size-dependent mortality data across a series of stands of differing ages.265
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Results266

Analysis of the New Zealand forest plot dataset revealed multimodal distributions267

in 179 plots in 1974, 163 plots in 1984 and 152 plots in 1993 from of a total of 250268

plots in each survey. This represents 66% of plots, showing that multimodality is269

more common than unimodality within these forests (see Appendix 1).270

The simulation model was fit to the observed individual growth rates in the271

F. cliffortioides dataset and provided a robust representation of the empirically-272

measured patterns. The fitted parameters (a, b and Cdbh) are shown in Table 1.273

[AWAITING STATEMENT ON GOODNESS-OF-FIT] The effectiveness of the274

model was assessed through its ability to capture size-dependent mortality rates,275

which were an emergent property of the system and not part of the fitting process.276

Size distributions thus obtained were qualitatively similar to those observed in the277

empirical dataset [10]; see Appendix 2.278

Subsequent simulation modelling used the parameters derived from the F. clif-279

fortioides dataset (a, b, Cdbh) and created simulated forests to investigate the280

potential origins of multimodal patterns. Using stochastically-generated starting281

patterns, major differences were evident in the patterns of growth and survival282

depending on the degree of competitive asymmetry p and the initial spatial con-283

figuration (Fig. 1).284

With completely symmetric competition among individuals (p = 0), average285

tree growth in clustered patterns was greater than in either random or dispersed286

patterns (Fig. 1a). This unexpected result can be attributed to the high rate of287

density-dependent mortality in very early time steps (Fig. 1d). Initial mortality in288

random patterns reduced the population to be comparable with dispersed patterns,289
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compensating for the slight initial differences in abundance. Clustered populations290

remained larger in average stem size (Fig. 1a) as the result of a smaller final291

population size (Fig. 1d), an effect which developed rapidly and was maintained292

beyond the plausible 200-year lifespan of F. cliffortioides.293

In the absence of asymmetric competition (p = 0), starting patterns had a294

limited effect on final size distributions, with only minor increases in skewness295

in clustered populations at advanced stages of development (Appendix 3). In all296

cases size distributions remained unimodal. It is therefore apparent that varia-297

tion in initial spatial patterns is not in itself sufficient to generate multimodality298

in size distributions, at least not unless the average distance among individuals299

exceeds their range of interaction, which is highly unlikely in the context of plant300

populations.301

The introduction of weak asymmetry (p = 1) tended to increase the mean size302

of individuals while causing reductions in population size (Fig. 1b,e) and dimin-303

ishing the differences among initial patterns, such that with strong asymmetry304

(p = 10) the differences in final size between starting patterns were negligible305

(Fig. 1c). Strong asymmetry also caused population sizes to converge within the306

likely lifespan of the trees, irrespective of starting conditions, and at a lower fi-307

nal level (Fig. 1f). Reduced differences among initial patterns with increasing308

asymmetry arose because fewer small trees survived around the largest tree in the309

vicinity, which caused patterns to converge on a state with dispersed large indi-310

viduals and smaller individuals in the interstices. More left-skewed distributions311

also emerged as a consequence of the low tolerance of individuals to depletion312

of resources (individuals failing to obtain sufficient resources for their metabolic313

needs died immediately). Thus the small individuals die soon after their resource314
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acquisition area is covered by the interaction range of a larger individual. Such315

left skew would be reduced for species capable of surviving long periods of time316

with low resources either through tolerance or energy reserves.317

Increasing competitive asymmetries caused size distributions to exhibit slight318

multimodality with a lower frequency of individuals in the smaller size class at319

150 years (Fig. 2). Given entirely random starting patterns, more pronounced320

bimodality emerged as the degree of asymmetric competition increased. Further-321

more, the model predicted a U-shaped size-dependent mortality rate, qualitatively322

consistent with a pattern in the empirical data (Fig. 3; compare Fig. 5 in [10]).323

This trend intensified with increasing asymmetric competition, and was absent324

when resource division was symmetric. It occurred because in large trees the ma-325

jority of resources are required for maintenance, and therefore even a relatively326

small amount of competition ultimately increases their mortality rate. Note also327

that in the absence of asymmetric competition the death rate of large trees declines328

effectively to 0.329

Greater insights into the causes of multimodality are revealed through the use330

of designed spatial patterns in which the timing of interactions within model devel-331

opment can be precisely controlled. These illustrate that the separation between332

modes is determined by the distance among competing individuals under asym-333

metric competition (Fig. 4 and Appendix 4). The size structure can therefore334

provide an indication of the dominant distance over which individuals are compet-335

ing, though separation of modes will be less clear when a strict grid is absent. Note336

that the position of the right-hand mode remains identical, and it is only the mode337

of the subordinate individuals which shifts to a smaller size class. Highly-dispersed338

patterns give rise to more complex size distributions through their development339
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when asymmetric competition is present. In the most extreme case, when initial340

patterns are gridded, each individual interacts with a series of neighbours as its341

size increases, leading to a complex multimodal pattern, at least until continued342

mortality removes smaller size classes (Fig. 5). Note that the modes are more343

clearly distinguished than is the case for random starting patterns where distances344

among individuals vary (compare Fig. 2c).345

The patterns generated by small groups of interacting individuals at equal dis-346

tances apart with asymmetric competition lead to size distributions with a number347

of modes equal to the number of individuals within each group. For patterns de-348

rived from pairs of individuals, the size distribution is bimodal, and in similar349

fashion triads and tetrads produce size distributions with three and four modes350

respectively (Fig. 6). Each mode corresponds to the discrete ranking of individuals351

within groups. This indicates that in gridded populations, as might be observed352

in plantations or designed experiments, the number of modes is determined by the353

effective number of competitors.354

Discussion355

Multimodality in cohort size distributions is the outcome, rather than the cause,356

of asymmetric competition among individuals of varying size. Regardless of initial357

small-scale starting patterns, size distributions remain unimodal in the case of358

symmetric competition among individuals. Only when larger individuals are able359

to acquire a greater proportion of resources from shared space does bimodality360

begin to emerge. Spatial patterns of established individuals can modulate these361

interactions, with complex multimodal distributions generated when individuals362
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are either regularly or highly dispersed in space. The number of modes corresponds363

to the number of effective competitors and their separation is a consequence of364

average distances among individuals.365

Asymmetric competition will lead to multimodal distributions at some point366

during stand development. We extend upon previous studies [e.g. 45] by provid-367

ing a general framework for predicting and interpreting complex size distributions368

in spatially-structured populations. Under light competition the modes will cor-369

respond to discrete and well-defined canopy layers. In [15] a series of controlled370

experiments were conducted to investigate size distributions in populations of an-371

nual plants, finding in many cases that distributions with two or three modes were372

observed. Our results allow for a fuller interpretation of these earlier findings, as373

we have shown that the number of modes reflects the number of effective competi-374

tors, placing a limit on the complexity of size distributions. As demonstrated in375

Figs. 4 and 6, the larger mode remains in the same position regardless of the size376

at which competition begins. This highlights that those individuals in larger size377

classes are almost unaffected by competition during stand development.378

Even when all individuals in a population begin with identical size, small fluctu-379

ations in the acquisition of shared resources lead to a multimodal size distribution,380

regardless of whether the initial pattern was random, dispersed or clustered. The381

size distribution is not affected by differences in the initial spatial structure at small382

scales due to the death of close neighbours early in stand development. A similar383

result was found by [44], who argue that the importance of recruitment patterns in384

generating asymmetries in competition may have been over-stated. Likewise initial385

density will have a limited effect on final size distributions as its main influence is386

on the time at which individuals begin to interact [44]. Therefore, while local in-387
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teractions undoubtedly do cause competitive asymmetries [e.g. 20], these are more388

relevant in determining the pattern of mortality during self-thinning rather than389

final size distributions, so long as the distances over which competition influences390

growth are larger than the characteristic scales at which initial spatial structuring391

occurs. In dense aggregations of recruiting plants this is likely to be the case.392

While separation among modes is an indicator of the average distance between393

effectively competing individuals, a more nuanced perspective is required to inter-394

pret the relative sizes of modes. The secondary peak can be lower in height (e.g.395

Fig. 2c), approximately equal (e.g. Fig. 6) or higher (e.g. Fig. 4), and relative396

heights can change through time. When smaller individuals are outnumbered by397

larger members of the cohort it indicates that high levels of mortality have oc-398

curred before the multimodal size structure developed. This situation is common399

when initial patterns are random and many individuals begin close to one another.400

When modes are approximately equal in height it indicates that little mortality401

has taken place and each large individual is paired with a smaller competitor which402

has yet to be excluded. Multimodality in this case is a transient phenomenon, in403

that it is unstable, though may still be maintained for the effective lifespan of the404

individuals involved. In our simulations it occurs when individuals begin as groups405

because the multimodal structure only develops once they have reached moder-406

ate size, providing some resistance towards competition. Finally, the case where407

the secondary peak is higher reflects increased mortality rate of larger individuals408

which have become more sensitive to competition due to the higher maintenance409

costs associated with large size. The effect is hard to achieve in large patterns as410

the greater number of competitive interactions experienced by smaller individuals411

tends to broaden the distribution of sizes. It is therefore unlikely to be observed412
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in nature.413

The model predicts a U-shaped size-dependent mortality rate, conforming with414

previous studies in old-growth forests [10, 46, 47]. In contrast to previous work on415

these data [10, 30], however, there is no need to invoke disturbance rates to account416

for this pattern. Lorimer et al. [46] found that trees which died had a smaller417

than average exposed crown area for their size, suggesting competition-induced418

mortality and consistent with the mechanism presented in our model. Nevertheless,419

tree allometry is itself influenced by competition [48], and taller slender stems420

might represent individuals which have invested in height growth at the expense421

of canopy diameter. If these stems are also more susceptible to disturbance then422

this remains an alternative hypothesis and detailed investigation will be required423

to separate the two processes. Moreover, trees exhibit great flexibility in their424

investment in reproduction, and it is likely that resource-limited trees will reduce425

seed production before growth.426

Age-related senescence of larger stems us not required by the model to capture427

a U-shaped size-dependent mortality rate. That trees grow continuously through-428

out their lives is a prediction of metabolic scaling theory [49] which has recently429

been claimed as a general pattern [50]. Furthermore, we show that with stronger430

asymmetry in competition, the U-shaped pattern is more pronounced as a result of431

large stems operating at the margins of their ability to maintain existing biomass,432

and thereby becoming sensitive to competition from other large neighbours. Small433

stems have high mortality due to a failure to obtain any resources, whereas medium434

trees are able to reduce their growth rate while still receiving sufficient resources435

to survive. This differs from the prediction of [51] who suggested that under436

asymmetric competition mortality rates should decline with size. Disturbance and437
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senescence contribute to additional mortality of large stems in natural forests, but438

our suggestion is that studies of these effects should take into account the possible439

presence of an existing U-shaped response. It is however unlikely that metabolic440

costs scale linearly with biomass, given the high proportion of inert wood in large441

trees, though an appropriate scaling relationship remains a matter of debate within442

the literature [e.g. 21].443

The model implies only a single resource for which individuals compete. It is444

typically assumed that above-ground competition for light is asymmetric, whereas445

below-ground resources are competed for symmetrically [52], though the latter446

assumption may not always be true [e.g. 53, 54]. More complex zone-of-influence447

models can take into account multiple resources and adaptive allometric changes on448

the part of plants in response to resource conditions [e.g. 55, 56]. Indeed, plasticity449

can diminish the impact of asymmetric competition [55, 57]. Although below-450

ground interactions are challenging to measure directly, there is good evidence451

that above- and below-ground biomass scale isometrically [58] which justifies the452

use of above-ground biomass to infer potential root competition. Previous work453

using the same data has identified a dominant role for light competition among454

smaller stems, with nutrient competition important at all stem sizes [21].455

Forest mensuration tends to overlook the shape of size distributions in favour of456

summary statistics [e.g. mean size, coefficient of variation, maximum size; 59] and457

may therefore miss out on valuable contextual information. While the utility of size458

distributions as a predictive tool for modelling dynamics has been frequently over-459

stated [60, 61], they can nonetheless remain a valuable indicator of past dynamics.460

One outcome of bimodality arising from asymmetric competition is that large and461

small individuals have differing spatial patterns, with the larger dispersed in space462
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and the smaller confined to the interstices generated by the dominant competi-463

tors [62]. This can be used as a diagnostic tool as it allows this mechanism to464

be distinguished from abiotic heterogeneity, leading to clustering of similar sizes,465

or independent sequential recruitment, leading to a lack of co-associations be-466

tween size classes [14]. Likewise in mixed-species stands succession can cause a467

multimodal pattern to emerge through aggregation of several unimodal cohorts,468

persisting throughout stand development [11]. Bimodality generated by size469

competition among individuals is a distinct phenomenon from the bimodality in470

inherited size across species which is often observed in mixed-species communities471

[e.g. 63, 64, 65]. Where size histograms combine individuals from multiple species,472

the causes of bimodality are likely to include long-term evolutionary dynamics473

in addition to direct competition among individuals. Contextual information on474

spatial patterns, disturbance regimes and community composition are therefore es-475

sential to interpreting size distributions in natural systems. The interplay between476

size distributions, plant traits and disturbance can generate complex emergent477

patterns in forest dynamics at the landscape scale [66].478

Our models are based upon parameters obtained from a long-term dataset and479

can therefore be immediately transferred to a predictive framework. While the480

exact terms are most suited to the Fuscospora cliffortioides forests which form481

the basis of this work, it is likely that they will be applicable to any monospecific482

plant population. Bimodal size distributions might be overlooked where aggregate483

curves are drawn as composites of a large number of plots, which will tend to484

average out differences, or where appropriate statistical tests are not employed.485

We find that 66% of plot size distributions in our data are bimodal. It is likely486

that these do not all represent single cohorts; for example, a severe storm in 1972487
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opened the canopy in some plots and allowed a recruitment pulse [29, 67]. Irre-488

spective of this, our growth model is able to capture subsequent stand development489

regardless of the origin of the bimodality (see Appendix 2). Our results also show490

that multimodality can act as an indicator of asymmetric competition. Thomas491

& Weiner [38] present evidence that the degree of asymmetry in natural plant492

populations is strong, with larger individuals receiving a disproportionate share of493

the resources for which they compete (p� 1). The phenomenon of multimodality494

should therefore be widespread.495

In conclusion, and in contrast with a previous review of bimodality in cohort496

size distributions [14], we contend that asymmetric competition is the leading can-497

didate for explaining multimodal size distributions, and is its cause rather than the498

outcome. Previous simulation results suggesting that the parameter space within499

which multimodality occurs is limited were based on stand-level models. Through500

the use of individual-based models it can be demonstrated that multimodality is501

an expected outcome for any system in which larger individuals are able to control502

access to resources, and where individuals compete in space. The strength of these503

asymmetries determines the degree to which multimodality is exhibited, while the504

number and separation of modes are determined by the number of effectively-505

competing individuals and the distances among them. While multimodality may506

be a transient phase within the development of our models, many forest stands507

exhibit non-equilibrial conditions, and indeed most natural plant populations are508

prevented by intermittent disturbance from advancing beyond this stage [29, 67].509

Consistently unimodal size distributions should be seen as the exception rather510

than the rule.511
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Tables720

Table 1: Model terms as used in the text, separated between fitted parameters ob-
tained from field data and free variables at the individual and stand level.[JORGE
— ALL NEEDS CHECKING, ESPECIALLY a AND b]

Symbol Value Units Definition
Fitted parame-
ters
a 2.5× 10−3 10×kg−3/4×year−1 Conversion factor between

mfrac−3/4 and E
b 2.5× 10−4 10×kg−1 Resource cost for maintenance

per unit biomass
Cdbh 9.4 cm/10×kg3/8 Allometric relation between

biomass and dbh
Individual-level
parameters
m variable 10×kg Biomass of an individual
dj variable m Distance of an individual i to its

neighbour j
AI

j m2 Area of interaction between an in-
dividual i and its neighbour j

Stand-level pa-
rameters
p fixed dimensionless Degree of competitive asymme-

try. p = 0 corresponds to sym-
metric competition while p > 0
indicates asymmetric competition

E equation (3) 10×kg/year Resource intake rate of an indi-
vidual

I(m,mj, dj) equation (4) Resource/year Reduction of resource intake rate
due to competition

fm(m,mj)
mp

mp+mp
j

dimensionless Fraction of resources that an indi-
vidual of biomass m obtains from
the area of interaction with an in-
dividual of biomass m′
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Figure captions721

Figure 1. Cohort-level characteristics of stands with either random, clustered722

or dispersed initial starting patterns over t years (simulation time). (a–c) Mean723

tree size in kg with increasing levels of asymmetry in competition from symmetric724

(p = 0) to weak (p = 1) and strong asymmetry (p = 10). Note that (a) has a725

reduced y-axis length. (d–f) mean number of surviving individuals N per 20×20726

m plot with p (0, 1, 10). Each line is derived from an ensemble average of 700727

simulations.728

729

Figure 2. Size-frequency histograms for simulated stands. All plots represent730

150 years of stand development with increasing levels of asymmetric competition731

p (0, 1, 5, 10) and random initial pattern. Each plot is derived from an ensemble732

average of 700 simulations.733

734

Figure 3. Mortality rate as a function of tree size. Solid line for symmetric735

competition, dashed and dotted lines correspond to increasing asymmetric com-736

petition. Derived from an ensemble average of 700 simulations.737

738

Figure 4. Separation between modes with varying distance of competing neigh-739

bours and strong asymmetric competition (p = 10). Size distributions of stands740

composed by pairs of equidistant individuals after 200 years of development. Solid741

line: individuals spaced at 1.5 m, dashed line: individuals spaced at 3 m. Each742

line is derived from an ensemble average of 700 simulations.743

744
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Figure 5. Emergent size distribution through stand development given an initially745

gridded starting pattern. Individuals separated by 1.5 m from their neighbors and746

strong asymmetric competition (p = 10). Panels show distribution at 150, 200, 230747

and 250 years. Each plot is derived from an ensemble average of 700 simulations.748

749

Figure 6. Size distributions of stands composed of groups of two, three and four750

equidistant competing individuals (pairs, triads and tetrads respectively) with 3 m751

of separation among individuals in each group and strong asymmetric competition752

(p = 10). Each line is derived from an ensemble average of 700 simulations.753
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Figure 1: Cohort-level characteristics of stands with either random, clustered or
dispersed initial starting patterns over t years (simulation time). (a–c) Mean tree
size in kg with increasing levels of asymmetric competition p (0, 1, 10), note that
(a) has a reduced y-axis length; (d–f) mean number of surviving individuals N
per 20×20 m plot with competition varying from symmetric (p = 0) to weakly
(p = 1) and strongly asymmetric (p = 10). Each line is derived from an ensemble
average of 700 simulations [JORGE REVISING TO HAVE TIME RUNNING TO
200 YEARS AND CONSISTENT Y AXES].
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Figure 2: Size-frequency histograms for simulated stands. All plots represent 150
years of stand development with increasing levels of asymmetric competition p (0,
1, 10) and random initial pattern. Each plot is derived from an ensemble average
of 700 simulations [JORGE REVISING TO REMOVE PANEL (C)].
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Figure 3: Mortality rate as a function of tree size. Solid line for symmetric compe-
tition, dashed and dotted lines correspond to increasing asymmetric competition.
Derived from an ensemble average of 700 simulations, each of which is run for
a nominal 460 years, and showing the cumulative function over the whole time
period.
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Figure 4: Separation between modes with varying distance of competing neigh-
bours and strong asymmetric competition (p = 10). Size distributions of stands
composed by pairs of equidistant individuals after 200 years of development. Solid
line: individuals spaced at 1.5 m, dashed line: individuals spaced at 3 m. Each
line is derived from an ensemble average of 700 simulations.
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Figure 5: Emergent size distribution through stand development given an initially
gridded starting pattern. Individuals separated by 1.5 m from their neighbors and
with strong asymmetric competition (p = 10). Panels show distribution at 150,
200, 230 and 250 years. Each plot is derived from an ensemble average of 700
Monte Carlo simulations.
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Figure 6: Size distributions of stands composed of groups of two, three and four
equidistant competing individuals (pairs, triads and tetrads respectively) with 3
m of separation among individuals in each group. Asymmetric competition set
at p = 10. Each line is derived from an ensemble average of 700 simulations and
shows the distribution at 250 years.
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Figure 7: Frequency of Fuscospora cliffortioides plots in New Zealand exhibiting
uni- or multimodality in the observed size distribution as determined by finite
mixture models testing for the presence of one, two or three modes. Each plot
was surveyed on three occasions and the histogram presents the combined re-
sults [TEMPORARY FIGURE — JORGE TO REVISE, AND IT’S STILL NOT
CLEARWHETHER THIS IS FORONE SURVEYORALL THREE COMBINED
(AVERAGED?) AS IT ADDS TO 250].
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Figure 8: Comparative figure to match Fig. 3 in Coomes & Allen 2007. Histograms
show distributions of diameter at breast height (dbh; cm) of stands in which mean
stem sizes were of medium (15–22 cm dbh; a) and large mean size (>20 cm dbh;
b) in 1974. Simulations began with trees in random positions following a size
distribution taken from the 117 stand with small mean stem size (<15 cm) in
1974. Dashed lines indicate patterns in simulated stands after 20 or 70 years of
model time respectively. This is the ensemble average of 117×4 = 468 simulations.
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Figure 9: Size distributions of populations with symmetric competition among
individuals (p = 0) but variation in initial pattern (random, dispersed, clustered).
Panels show distribution at 150, 250 and 500 years. Each plot is derived from
an ensemble average of 700 simulations. [JORGE EDITING TO REMOVE FI-
NAL PANEL AND PROVIDE TIME STEPS CONSISTENT WITH THOSE IN
OTHER FIGURES]
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Figure 10: Effect of increasing distance between paired individuals within simula-
tions (as Fig. 4) on separation between modes in the emergent size distribution.
Note that increasing distance reduces the separation of modes by increasing the
model time required for two individuals to begin competing for resources. [TEM-
PORARY FIGURE — JORGE TO REVISE]
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