
Benefits of urban vegetation in Ōtautahi/ Christchurch  

Outline of methods used to generate web map layers 

 

This methods document describes the generation of map layers used in the “Benefits of 

urban vegetation in Ōtautahi/ Christchurch” online map. This research is currently under 

review, so this document is provided as an interim guide to the datasets and may be subject 

to change following peer-review. The datasets provided for online viewing and download 

have been resampled to a lower resolution. 

 

 

 

Summary of files contained in this dataset 

Index Unit Resampled 
resolution 

Filename 

Biomass carbon Kg Carbon ~1 ha carbon.tif 

Runoff retention Percentage 
incoming runoff 
retained 

~0.1 ha runoff.tif 

Erosion control Percentage potential 
erosion prevented 

~0.1 ha erosion.tif 

Air pollution removal  g of PM10 removed 
per day 

~0.04 ha pm10.tif 

Shade provided by 
vegetation 

Percentage of time 
that vegetation was 
providing shade 

~0.1 ha shade.tif 

School green space Percentage of green 
cover at closest 
school 

~0.001 ha school.tif 

Private green space Percentage green 
cover in private 
gardens 

~20 ha privategreen.tif 

Public outdoor 
spaces 

Closest distance to 
public outdoor space 

~20 ha publicgreen.tif 

Bird biodiversity Number of bird 
species 

~0.1 ha birds.tif 

 

  



Overarching datasets 

Vegetation was mapped using combined remote sensing datasets to identify green regions. 

High-resolution aerial photographs (7.5 cm pixel size resampled to approximately 1 m) were 

captured at a single snapshot in time (between December 2018 and February 2019; LINZ 

2020a). Due to the discoloration of some vegetation under Christchurch’s hot summer, this 

snapshot dataset was combined with a time series composite vegetation index provided by a 

lower resolution satellite image dataset from the Sentinel-2 Level-1C archive (approximately 

10 m pixel size). The time series composite was the median Normalised Difference 

Vegetation Index (NDVI) from all cloud-free images available between January 1st 2017 and 

December 31st 2020, composited using Google Earth Engine (Gorelick et al., 2017). The 

NDVI composite was resampled to match the spatial extent and resolution of the aerial 

photograph dataset. From the aerial photograph dataset we extracted the Red-Green-Blue 

Vegetation Index (RGBVI). We also identified grey areas of the images (typically indicating 

concrete or asphalt) by calculating the standard deviation and mean values from the Red, 

Green, and Blue (RGB) colour bands. Grey pixels were defined as those with mean RGB 

values of between 80 and 230, and standard deviation RGB values of less than 3. 

Vegetation was defined as pixels with either Sentinel-2 NDVI value of greater than 0.5, or an 

aerial photograph RGBVI value of greater than 0.1, that were not otherwise defined as grey 

pixels, and did not overlap with an authoritative polygon dataset of building outlines (LINZ 

2021a).  

Vegetation types were defined in relation to height classes obtained by overlaying the 

vegetation map with 1 m-resolution digital elevation and digital surface models obtained by 

airborne Light Detection and Ranging (LiDAR) and collected in summer 2018-2019 (LINZ 

2020b; LINZ 2020c). Vegetation canopy height was quantified by subtracting the digital 

elevation model from the digital surface model for vegetated pixels (Dissegna et al., 2019). 

We defined five vegetation classes depending on height; short grass (approximately 0 m), 

tall grass (0-0.5 m), shrubs and scrub (0.5-2 m), small trees (2-6 m) and taller trees (greater 

than 6 m). In addition to the categorical vegetation classification, we retained a continuous 

measurement of vegetation height for use in some models. Surface water was mapped by 

cross-referencing with an authoritative national land cover map from 2018 (LCDB, 2019).  

The accuracy of the vegetation type classification was quantified by visual assessment of 50 

randomly located truthing points from each class (five vegetation classes and non-vegetated 

cover). Each truthing point was visually inspected using the original aerial photographs and 

interpreted by a human surveyor. The agreement between the remote sensing and human 

classification was compared as a proportion and using Cohen’s Kappa scores (Landis et al., 

1977). The overall agreement between the human and map classifications was 79.7% with a 

Kappa score of 75.6. The highest user’s accuracy was found for tall tree vegetation and 

lowest user’s accuracy for short grass vegetation, which was most commonly misclassified 

as either tall grass or unvegetated.  

 

  



Nature’s contributions to people  

Carbon stocks 

Above-ground tree biomass carbon stocks for the tree vegetation classes were quantified 

using an allometric approach. All individual tall tree locations were extracted from the 

vegetation canopy height layer using a variable window filter method  (Popescu and Wynne, 

2004) implemented in the ForestTools package for R (Plowright and Roussel, 2021). We 

used a minimum canopy height of 2 m, maximum window diameter of 111 m, and moving 

window of approximately 10 m diameter. The maximum height of each tree canopy was 

extracted by the variable window filter algorithm, and we used this height to estimate the 

diameter at breast height (DBH) of each tree using an empirical multi-species allometric 

equation derived from field measurements of tree height and DBH taken from 15,681 trees in 

Christchurch city (Quan et al., 2021). The fitted allometric equation described a log-log 

relationship between DBH and height, with an R2 of 0.29. Above- and belowground biomass 

carbon stocks were estimated from tree DBH using one of two empirical equations 

developed from sampled urban and forest trees in New Zealand (Beets et al., 2012; 

Schwendenmann and Mitchell, 2014). We used the urban tree equation for trees smaller 

than 0.4 m in DBH as the empirical data underlying this equation were mainly from trees of 

around this size (Schwendenmann and Mitchell, 2014) and the general forest tree equation 

for larger trees (Beets et al., 2012). We excluded trees larger than 30 m in height as these 

are unlikely within the study region and may have been caused by minor inaccuracies in the 

underlying spatial datasets.   

 

Runoff retention 

We quantified the proportion of incoming rainfall retained by vegetation using a curve 

number approach (Mockus, 1972). Soil hydrological group maps were extracted from a 

globally available dataset (Ross et al., 2018). For each combination of vegetation class and 

soil hydrological group, we collated suitable curve numbers by referring to urban and rural 

planning guidelines from New Zealand authorities (Auckland Regional Council, 1999; 

Ministry for the Environment, 2010; Srinivasan et al., 2007). We modelled runoff under an 

extreme rainfall event, defined as the 24 hour average return interval for Christchurch 

Botanic Gardens, which is equivalent to 137 mm (National Institute for Water and 

Atmospheric Research, 2022).  

 

Erosion control 

We quantified the proportion of potential soil erosion prevented by vegetation following an 

approach derived from the Revised Universal Soil Loss Equation (Guerra et al., 2014). We 

implemented a modified soil loss equation model developed for New Zealand, which 

estimates the mean annual erosion rate due to surficial processes (Dymond, 2010). The 

model is the product of precipitation, slope gradient and slope length factors, a soil factor, 

and a vegetation factor which were parameterised based on the topographic model for each 

landscape and based on assumptions about the soil erosion factor and precipitation rates. 

Mean annual precipitation was extracted from a national dataset (McCarthy et al., 2021). 

The vegetation factor was parameterised for vegetation type based on expert assessment of 

the relative ability of each vegetation cover to reduce erosion, following previous work 

(Dymond, 2010; Lavorel et al., 2022). 



 

Particulate matter removal from air 

The contribution of vegetation to removing particulate matter pollution from the air was 

quantified using a standard approach based on the leaf area index of vegetation, 

background concentration, and deposition velocity of particles (Nowak et al., 2013, 2006). 

Winter-heating is the primary source of air pollution in Christchurch, hence we focussed on 

particulate removal over winter. Tree canopy leaf area index was estimated from a 

composite Landsat 8 satellite image using an empirical relationship developed from sampled 

locations in a central Christchurch park (Kato et al., 2013). Cloud-free calibrated top-of-

atmosphere reflectance Landsat 8 images were composited by taking the median of all 

available wintertime images from between 2016 and 2020, using Google Earth Engine 

(Gorelick et al., 2017). We calculated the reduced simple ratio from this composite image 

(Brown et al., 1994), and applied the empirical regression relationship between leaf area 

index and reduced simple ratio quantified by the previous Christchurch study (Kato et al., 

2013). To parameterise the particulate matter removal equation for particulate matter smaller 

than 10 μm in diameter (PM10) we assumed a concentration of 22 μg/ m3, which is the winter 

daily average calculated between 2017 and 2020 (Stats NZ, 2022). We assigned removal 

and recirculation velocities per unit leaf area from previous studies in Christchurch and 

around the world (Cavanagh, 2008; Cavanagh et al., 2009; Richards et al., 2022; Tan et al., 

2021).  

 

Shade provision 

We quantified the proportion of time that vegetation was providing shade at ground level 

using a three-dimensional ray shading model (Morgan-Wall, 2022). To disentangle the 

impacts of vegetation and building shade, we applied the rayshading model three times to 

different three-dimensional models: (1) the full model including both vegetation and 

buildings, (2) an inverse vegetation canopy model quantified by subtracting the vegetation 

canopy height from the ground surface height, and (3) the building canopy model. The total 

canopy and inverse vegetation canopy models were used to quantify the total area of shade 

provided adjacent to buildings and vegetation, and shade provided beneath vegetation. 

Areas shaded by vegetation that would anyway be shaded by buildings were discounted by 

subtracting the building canopy modelled shade area. This three-dimensional approach to 

quantifying urban tree shade is comparable to similar studies from elsewhere in the world 

(Dissegna et al., 2021; Kong et al., 2022), and the comparison of vegetation-shaded and 

building-shaded area to quantify vegetation-specific shading follows an approach developed 

for analysis of sky-view factors (Richards and Edwards, 2017). As an indicator of shade 

provision under summer conditions when shade may be most needed, and deciduous tree 

canopies are most significant in providing shade, we quantified vegetation shade provision 

for 11 moments in time: every hour between 8 am and 6 pm on the 1st of February 2019 

(Morgan-Wall, 2022). The proportion of the 11 occasions that each pixel was shaded by 

vegetation was taken as the indicator of shaded time.  

 

Green spaces for education 

We quantified the percentage of green cover within each school in Christchurch as an 

indicator of green space accessibility during formal education experience. The boundaries of 

all primary and secondary schools were taken from a national database of facilities, totalling 



128 schools (LINZ 2021b). We included all vegetation types in our definition of school green 

cover. To map this indicator continuously, we assumed that each part of the study area took 

the value from the the closest school, by generating Voronoi polygons around each of the 

school locations.  

 

Private green space 

We quantified the area of private green space for each residential parcel by cross-

referencing the vegetation cover map with the boundaries of individual residential properties. 

We extracted all property boundaries from a national dataset (LINZ, 2022) and subset only 

properties that were zoned for residential, rural residential, or mixed use according to the 

regional zoning plan (Christchurch City Council, 2020). We also excluded very large parcels 

(greater than 10,000 m2) which are deemed less likely to be residential in use. In total, our 

analysis included 116,708 parcels. We included all vegetation types in our definition of 

private green cover. 

 

Public recreation space 

For each parcel we quantified the minimum distance to a public recreational outdoor space. 

Public outdoor recreational spaces were mapped using an authoritative dataset of land 

zoning, for which we extracted all open space and conservation space polygons 

(Christchurch City Council, 2020). We calculated the minimum Euclidean distance between 

each outdoor recreational space and each residential parcel. Euclidean distance has been 

widely used as an indicator of accessibility to outdoor recreational features in urban 

environments (Belcher et al., 2019; Huang et al., 2017; Richards et al., 2020) and is typically 

correlated with more complex geographical accessibility indicators (Higgs et al., 2012). 

 

Bird biodiversity 

Bird species richness is a common indicator of urban biodiversity (Belcher et al., 2018; 

Canedoli et al., 2017). We modelled urban bird species richness as a function of spatially-

explicit explanatory variables to project species richness continuously across the study 

region (Divíšek and Chytrý, 2018). The model was parameterised using empirical records of 

species richness sampled by citizen scientists through the New Zealand Garden Bird Survey 

(MacLeod et al., 2022). Citizen scientists were asked to record all bird species observed 

over a one hour period, during a survey period lasting for nine days in midwinter (MacLeod 

et al., 2022; Spurr, 2012). Surveys were conducted across a range of land uses, but most 

typically within private gardens (MacLeod et al., 2022; Spurr, 2012). We extracted all records 

within the study area boundary from 2018, 2019, and 2020 New Zealand Garden Bird 

Surveys, and removed duplicate records that reported identical spatial locations. The total 

dataset included 936 records (2018 = 151, 2019 = 238, and 2020 = 547), with a minimum 

observed species richness of 0 and a maximum of 24. 

We modelled bird species richness as a function of 13 variables calculated at three spatial 

scales (10-m cells and 100 m and 1 km radius moving windows). The variables included the 

proportional cover of grass, shrub/scrub, tree, and water quantified at each spatial scale. 

The vegetation maps were resampled to a 10 m resolution prior to calculating the spatial 

variables for speed processing. Furthermore, we included an indicator of spatial connectivity 

or fragmentation between patches of vegetation cover, quantified as the patch size of 



combined vegetation taller than 0.5 m. Bird species richness was modelled using a 

generalized boosted regression assuming a Poisson error structure, fitted using the gbm 

package for R (Greenwell et al. 2022). We fitted the model using 80% of the available data 

(n = 748) with the remaining 188 data points used to assess model fit. As an initial testing 

step, we fitted two models: one using the set of 13 explanatory variables listed above and a 

more complex model with 19 variables, in which the short grass and tall grass variables and 

small tree and tall tree variables were separated. The performance of the two models was 

similar, so we used the more parsimonious model with 13 explanatory variables. The most 

influential model parameters were the coverage of short grass within 100 m, coverage of 

water within 1 km, and coverage of shrub/scrub within 1 km.  
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