Appendix S1: Pseudo-code for livestock as sentinels for wildlife disease

- I. Set the distribution parameters from which to draw random variates of model parameters for each iteration of the model
 - A. Number of iterations (*iter*)
 - B. Sampling period (e.g. annual from 2000 2014)
 - 1. Calculate number of periods (*nPeriods*)
 - C. Beta parameters (a, b) for the prior of the probability of no disease in wildlife (eq. 9 and 10)
 - D. Beta parameters (c, d) for the annual probability of new incursion into the area
 - E. Spatial resolution of grid cell system for analysis (*resol*; e.g. 100 m)
 - F. The design prevalence $(P^*; eq. 6 \text{ and } 8)$
 - G. The rate of increase of the design prevalence
 - H. Mean and variance parameters for σ^2 (μ , ε^2 ; eq. 2)
 - I. Beta parameters (e, f) for the disease diagnostic tests
 - J. Beta parameters (g, h) for the I_{max} parameter (eq. 1 and 2)

II. Import the data

- A. Spatial data delimiting the area over which disease eradication will be declared (e.g. shapefile or raster)
 - 1. Mask out un-suitable habitat that will not contain homerange centers of possums
- B. Herd surveillance data (e.g. *.csv file)
- C. Spatial data on farm boundaries for all farms (e.g. shapefile or raster)
 - 1. Mask out areas where livestock cannot move (e.g. fenced off areas or very dense vegetation)
- D. Spatial data on the relative risk of disease infection (e.g. raster; eq. 8)

III. Pre-process the spatial data

- A. Loop through each farm
 - 1. For each farm, create an empty raster the size of the full extent

- 2. Loop through grid cells
 - a) Identify grid cells within and adjacent to the farm where possums could live but livestock cannot access
 - b) Apply the distance decay function $exp\left(-\frac{d_{jk}^2}{2\sigma^2}\right)$ for each grid cell (eq. 2)
 - c) Populate the farm-specific raster with the results of distance decay function
- B. Make a design prevalence array
 - 1. Make an empty array with the length of the number of sampling periods (e.g. number of years)
 - 2. Populate the first position with the design prevalence (I.F. above)
 - 3. Subsequent entries are a function of the rate of increase (I.G. above)
- C. Calculate the *EPIAve* for year sampling period (eq. 7)
 - 1. Use the relative risk map (II.D. above; eq. 8)
 - 2. Use the herd testing data (II.B. above) to identify grid cells that will be searched

IV. Process the data

- A. Loop through the iterations (I.A. above)
 - 1. Make an empty raster of dimensions of the full extent in which to store the SeU_i values.
 - 2. Draw random variates for all model parameters from distributions specified in I. (except *iter*, *resol*, P^* , and rate of increase of P^* , which are constant for all iterations).
 - 3. Loop through the *nPeriods* (I.B.)
 - a) Loop through the grid cells in (all columns and rows)
 - (1) If a grid cell is in the extent of interest, loop through all farms, and calculate the SeU_{ik} (eq. 1-4)
 - (2) Calculate SeU_i (eq. 5)
 - b) Calculate the *SeUAve* and *SSe* (eq. 6 or 7)
 - (1) Record the *SSe* in a 2-dimensional storage array [*iter*, *nPeriods*]
 - c) Calculate the $P(free|S^-)_t$ (eq. 10 or 11)

(1) Record the $P(free|S^-)_t$ in a 2-dimensional storage array [iter, nPeriods]

B. Make table of results

- 1. Calculate the mean and 95% CI of SSe for each sampling period
- 2. Calculate the mean and 95% CI of $P(free|S^-)_t$ for each sampling period