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Abstract12

Spatially explicit capture-recapture modelling is used to estimate population density to enhance13

our ecological understanding and management of wildlife populations. The two primary parame-14

ters estimated in the capture process of these models are σ and g0. The σ parameter is the standard15

deviation of a bivariate normal home range kernel (indicating home range size), while g0 is the16

probability of capture by a device placed at the home range center. These parameters are being17

increasingly generalized and used in simulation models to predict detection or capture rates of18

invasive animals to inform management strategies. Given the sensitivity of simulation model pre-19

dictions to parameter values, we undertook an analysis of pre-existing GPS telemetry and trapping20

data of invasive brushtail possums (Trichosurus vulpecula) across New Zealand to address the fol-21

lowing three questions. First, how does σ vary with population density, habitat, and age-sex class?22

Second, how is g0 influenced by home range size (i.e., σ ) and trap type? Third, how much does the23

predicted probability of capture or detection of individuals vary within and across sites? We used24

data from 180 possums across 18 sites to develop a Bayesian hierarchical model. Results showed25

that σ decreased with increasing population density and increasing farm area. Juveniles and males26

tended to have larger home ranges (higher sigma parameters) than adults and females. There was27

a strong negative relationship between σ and g0, and g0 was highest for cage traps and lowest for28

raised leg-hold traps. Despite the potential compensatory inverse effect of g0 with σ , the proba-29

bility of capturing a randomly located possum by a large array of traps increased with increasing30

σ . Results show that selection of σ for predictive simulation modelling should begin with an esti-31

mated or assumed population density. The associated g0 should then be identified as a function of32

σ , and stochasticity should be incorporated to account for inter-individual variability33
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Introduction36

Spatially explicit capture-recapture modelling has the primary ecological objective of estimating37

population density in a particular area (????). These models have been extended to estimate38

population growth rates and immigration (??). The two primary parameters estimated in the39

detection or capture process of these models (i.e., g0 and σ ; see below) are being increasingly40

generalized and used in simulation models to predict detection or capture rates of a specified41

surveillance or trapping regime. This has the potential to a priori significantly improve survey42

design or the efficiency of management interventions (?).43

The spatially explicit detection models commonly assume a symmetrical bivariate normal home44

range using a half-normal detection function, but other functions are available (??). The first45

parameter influencing detection is the probability of capture of a given animal over a set period46

(e.g., one night) when the device is located at the animal’s home range center (??). This usually47

corresponds to the maximum probability of capture. The second parameter, σ , is the standard48

deviation of a bivariate normal home range kernel, which determines the rate of decay in the49

probability of detection with increasing distance between the home range center and the detection50

device. Using assumed values or distributions of these two parameters, based on empirical51

estimates, one can quantify the probability of detecting or capturing an individual animal or a52

group of animals and identify the optimal device deployment strategy that is most likely to deliver53

desired research or management outcomes (e.g., ?).54

Invasive species are well recognized as a threat to the integrity of natural biodiversity, ecosystem55
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function and services, and primary productivity (??????). Spatially explicit agent-based56

simulation models using g0 and σ are being used to estimate the control effort and management57

conditions required to achieve population-suppression objectives or the feasibility of eradication58

(???). Agent-based models also use these parameters to explore how distracting odors can be59

deployed to lure invasive predators away from endangered prey (?). Given the high financial60

expenditures required in perpetuity to minimize impacts of invasive species (?), eradication is61

becoming an increasingly attractive strategy which potentially can deliver high ecological62

benefits (???). Eradication programs can benefit from exploring trapping simulation models63

early-on, which incorporate g0 and σ estimates, to assess the cost-effectiveness of alternative64

trapping regimes in achieving zero pest densities. At the latter stages of the program, g0 and σ65

estimates can be incorporated in surveillance data models to quantify the probability that66

eradication has been successfully achieved given no recent detections (????).67

As described above, trapping and surveillance simulation models can and have become an68

integral tool in the invasive species management decision support toolbox. However, given the69

sensitivity of model predictions to parameter values, it is important to have accurate estimates for70

simulation experiments to ensure effective research design or management outcomes. The g0 and71

σ parameters have largely been treated independently in simulation modelling conducted thus far,72

however, there is a clear inverse relationship (?) that requires further analysis. For example, it is73

expected that an animal with a comparatively large home range (i.e., σ ) will spend less time74

around the home range center, and this should be reflected in a smaller g0. The exact shape of this75

inverse relationship is uncertain. To accurately simulate detection dynamics within a given76

research or management site, a quantitative method is required for estimating the mean and77

variance of σ within a population, and a corresponding model for predicting g0. The σ parameter78
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may vary with age and sex of individuals, habitat and population density (???????). Given the79

expected variation in σ due to population density and habitat, it would be inappropriate to80

generalise a single combination of parameters across diverse sites.81

In this study we developed a spatially explicit capture recapture model using trapping and GPS82

telemetry data on 180 brushtail possums (Trichosurus vulpecula) across 18 sites in New Zealand.83

Possums are native to Australia but are an invasive species in New Zealand. We used this model84

to estimate population density, σ and g0, and addressed the following three questions. First, how85

does σ vary with population density, habitat, and age-sex class? Second, how is g0 influenced by86

home range size (i.e., σ ) and trap type? Third, how does the predicted probability of capture or87

detection of individuals vary with σ , different trap types and trap densities. The last question88

addresses the practical importance for the interacting dynamics among habitat, density, σ and g089

for detecting and trapping animals on landscapes. Understanding the relationship among these90

parameters and how they are influenced by environmental, demographic and technical factors will91

help guide their empirical parameterisation, and how they are used in simulation models to92

identify optimal management strategies for diverse invasive species.93

Methods94

Data95

We analyzed GPS telemetry data collected in nine previously conducted studies, which included96

180 possums from 18 different sites (Table ??). The scheduled frequencies for obtaining location97

data across sites were generally 4 fixes per night at 2-hour intervals (see details on individual98

possums in Table S1 in Supplemental Material). The population density was expected to vary99
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across sites because of different levels and frequency of population control and habitat, which was100

categorized as forest, grassland or scrub. Forests were characterized by dominant tree cover by101

indigenous and exotic species. Grassland was native and exotic grasslands (including productive102

livestock grazing areas). Scrub was primarily covered by native tussocks and shrubs.103

Associated with the GPS telemetry data were the trapping data collected as part of the effort to104

capture and deploy the collars. These data consisted of locations and nightly trap outcomes for all105

traps and for the collared possums. Collared possums were in some cases recaptured on106

subsequent nights. Trapping data associated with GPS collar retrieval were not included in the107

analyses because the trapping effort was biased by using VHF telemetry to focus trap placement108

around the known location of each possum. Trapping data included three different types of traps:109

leg-hold traps set on the base of a tree but elevated above the ground, leg-hold traps set on the110

ground, and cage traps. All trap types had lures deployed on them. There was no trapping data111

associated with the GPS data for 18 collared possums. For these individuals we estimated σ but112

not g0. The trapping data consisted of possums captured and collared, recaptured collared113

possums, and captured but not collared possums (which were subsequently killed).114

Statistical modelling115

We developed a hierarchical Bayesian model to make inference on factors influencing σ , g0 and116

population density (Fig ??). The general approach was to use the telemetry and trapping history117

data of the collared animals to estimate σ and g0. Density was estimated with data augmentation118

to identify the likely number of individuals that would go undetected given home range behavior119

and detection probabilities (?).120

GPS location sub-model121
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The GPS data Zi jt were composed of xi jt and yi jt locations for each individual i at site j at time t122

(i.e., eastings and northings). There were Li location fixes for individual i. We modelled the123

probability of observing Zi jt as a symmetric bivariate normal:124

P
(
Zi jt
)
=

Li

∏
i=1

Normal
(
∆xi jt |0,σ2

i j
)

Normal
(
∆yi jt |0,σ2

i j
)

(1)

where σi j was the standard deviation of a normal distribution with zero mean, and ∆xi jt and ∆yi jt125

were the distances from the home range center of individual i to xi jt and yi jt , respectively. The126

home range center for each individual was calculated as the mean of all xi jt and yi jt .127

We modelled σi j as a log normal with mean ln
(
µi j
)
, which was a function of population density,128

and site and individual level covariates:129

ln
(
σi j
)
∼ Normal

(
ln
(
µi j
)
,E
)

(2)

µi j =
Ki j√

Density j
(3)

where E is the variance of σ , Ki j was a linear prediction of covariates, and Density j was the130

estimated population density at site j (individuals ha−1; see below). σi j was expected to vary131

inversely with the square root of Density j (eq. ??; ?).132

The predicted Ki j (eq. ??) determines how population density influences σ , and had the following133

full model:134
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ln
(
Ki j
)
= β0 +β1 pForesti +β2 pScrubi +β3 pGrassi +β4Femalei +β5Juvenilei (4)

where pForest, pScrub, and pGrass were the proportion cover of forest, shrub/tussock and135

grassland, respectively, in a 200-m radius around the home range center of each possum i. The136

covariates Femalei and Juvenilei were dummy variables (0 or 1) for female and juvenile possums,137

respectively. The priors on the β coefficients and E were Normal(0,10) and138

InverseGamma(0.01,0.01), respectively.139

Trap outcome sub-model140

We used the following procedure to model the trapping data
(
Yi jmt

)
for all N j possums at each site141

j, and across all traps m and nights t. The datum Yi jmt was the trap outcome (i.e. capture or142

non-capture) for possum i at site j in trap m on night t. These trapping data included those never143

captured (unobserved possums). For each site and night a multinomial trial was conducted for144

each possum, in which it could be caught in one of the M j traps or not be captured by any trap.145

Therefore, there were M j +1 possible outcomes for each possum per night. The probability of the146

observed trapping data at site j across all individuals, traps and nights was calculated as:147

Pr
(
Y j|N j,g0,σ ,τ

)
=

Tj

∏
t=1

(
N j

n jt

) N j

∏
i=1

M j+1

∏
m=1

θ
yi jmt
i jmt (5)

where θi jmt was the multinomial probability of the trapping outcome ijmt, and yi jmt was a binary148

array of length M j +1 that indicated which trap captured the possum or if it was not captured.149

The variable n jt was the number of possums captured on night t, and the combinatorial term150

accounts for the number of ways that the n jt possums could be caught on a given night.151
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As multinomial probabilities, the θi jt values for individual i at time t summed to one over all traps152

and the non-capture event. These were derived by transforming the probability of capture
(

pi jmt
)

153

for all traps. The pi jmt did not account for competition among traps to capture a possum, which154

was incorporated into the multinomial draw of the θi jmt probabilities (eq. ??).155

The pi jmt for the M j traps was calculated as the following:156

pi jmt = 1−

1−

g0,i jme

(
− d2

im
2σ2

i j

)
τYit∗

g0,i jme

(
− d2

im
2σ2

i j

)
1−Yit∗


Amt

(6)

where g0,i jm was the maximum nightly probability of capture for trap m, or the probability if the157

trap was placed at the center of the home range of possum i (?). Availability status of trap m on158

night t (Amt) was set to 1 unless the trap m caught a non-target species, was sprung empty or159

caught another possum on that night, in which case it was set to 0.5 (?). This reduced the160

availability of the trap to half the night. The variable dim was the distance between the home161

range center of individual i and trap m. The τ trap-happy or trap-shy parameter was multiplied by162

Yit∗ , which was equal to 0 when individual i had not previously been captured by any trap, and 1163

when it had been previously captured. A τ value < 1 would indicate that possums were trap164

happy and would be attracted to bait on nights subsequent to being trapped, whereas τ values > 1165

indicate that possums avoid traps on nights following the initial trapping.166

All traps within a distance of 4σi j of individual i were considered in the calculation of eq. ??.167

Traps beyond this distance were considered to have a zero probability of capture. The prior on τ168

was Gamma(0.9333,8.333) (shape and rate parameters, respectively), which has a mode of 1 and169

variance of 0.6.170
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We predicted the values of g0,i jm with the following linear function:171

logit
(
g0,i jm

)
= α0 +α1ln

(
σi j
)
+α2RaisedLeg+α3GroundLeg+δi (7)

where RaisedLeg and GroundLeg were indicator variables for leg-hold traps set on the base of tree172

and the ground, respectively. The δi parameter was an individual effect, and αs were covariate173

parameters. The α0 intercept included the effect of cage traps. The priors on the αs and δ were174

Normal(0,10) and Normal(0,1), respectively.175

We estimated Density j as the total number of possums available to be trapped
(
N j
)

divided by the176

effective trapping area. The effective trapping area was the area within a distance of 4σ j from all177

M j traps. Unobserved possums were assigned random home range center locations within 4σ178

meters of available traps. A possum beyond that distance would effectively have zero chance of179

being captured, based on the half-normal detection function (eq. ??). Each unobserved possum180

was assigned the mean σ j for site j, and the predicted g0,i jm (eq. ??) for trap m. The algorithm we181

developed sampled a large set of potential home range locations and the corresponding182

probability of presence given the no-detection history (eq. ??). The prior on Density j was183

uniform ranging from the known number of captured possums at site j to 20 possums ha−1.184

We assessed collinearity among the habitat covariates and did not include any two covariates that185

were correlated with r > |0.50|. We explored all possible combinations of non-correlated habitat186

variables while including Female and Juvenile in the GPS location sub-model (eq. ??). Using187

DIC (?) to compare models, we then examined the model with the most explanatory habitat188

covariate(s) while excluding Female and Juvenile. Finally, we assessed the model with only189

Female and Juvenile (no habitat covariates), and lastly, an intercept-only model. Preliminary190
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analysis showed that the α coefficients for σi j, RaisedLegm and GroundLegm in the trapping191

outcome sub-model (eq. ??) did not overlap zero, therefore these covariates were included in all192

models. We compared models by assessing the ∆DIC and the overlap with zero of the 95%193

credible intervals of covariate coefficients.194

We used Markov Chain Monte Carlo (MCMC) to estimate model parameters using the Python195

programming language. The variance parameter E was sampled from the full conditional196

posteriors, but all other parameters were estimated using Metropolis algorithms (?, pp. 175–177).197

Posterior summaries were taken from four chains containing 3,000 samples each (total of 12,000)198

with a burn-in of 8000 and a thinning rate of 30. Convergence on posteriors was assessed with199

visual inspection and a scale reduction factor < 1.05 (??).200

The probability of capturing or detecting a randomly located individual is the real world measure201

of the importance on how σ and g0 vary across individuals, populations and trapping regimes.202

Using the posterior estimates for the model parameters, we quantified the nightly probability of203

capture of a single possum with a randomly located home-range center in the central area of a204

large array of traps. The array covered a large enough area so that the home range of the possum205

was entirely within the spatial extent of the traps. This was repeated 3000 times to capture206

parameter variability and the random location of the possum relative to trap locations. We207

explored the effect of three trap densities (0.16, 0.58 and 2.15 traps ha−1), and the three different208

trap types (raised leg-hold, ground leg-hold, and cage traps). These trap densities correspond to209

the following trap layouts, respectively: separation distance between trap lines equal to 400, 200210

and 100 m; trap spacing on a line equal to 200, 100, and 50 m; and the number of trap lines equal211

to 3, 5 and 9.212
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Results213

Analysis of collinearity among covariates showed that pForest was highly correlated with pGrass214

(r =−0.86) and pScrub (r =−0.58). There was low correlation between pGrass and pScrub215

(r < 0.12). Given this collinearity, we first explored four models that differed by inclusion of216

habitat covariates, and also included Female and Juvenile: (1) pForest; (2) pScrub; (3) pFarm;217

and (4) pScrub and pFarm. Results showed that pGrass was the only habitat covariate that had218

95% CI that did not overlap zero. The model with the lowest DIC had pGrass as the lone habitat219

variable and did not include Female and Juvenile (Table ??). While the intercept-only model had220

the highest ∆DIC, all ∆DIC values were < 2.1 across all models.221

Results of the model with the lowest ∆DIC (pGrass only) indicate that σ and home range size222

decreases with increasing proportion of productive grassland in the home range area (Table ??).223

The β0 and the pGrass parameters (from eq. ??) predict the rate at which σ declines with224

increasing population density (eq. ??; Fig. ??). While σ decreased with increasing population225

density, there was high variability among individuals within a site (Table S1 in Supplemental226

Material). Home ranges tended to be smaller for females and adults than for males and juveniles,227

respectively; however the 95% CIs of these demographic parameters all overlapped zero.228

As expected there was a strong negative exponential relationship between σ and the predicted g0229

(Fig. ??). The rate of decrease in g0 was highest for σ < 100 m. The predicted g0 was highest for230

cage traps, followed by ground leg-hold and raised leg-hold traps, respectively (Table ??). To231

illustrate the difference, for a possum with a σ of 100 m, the mean nightly probability of capture232

by a single cage, ground leg hold and a raised leg hold trap placed at the home range centre would233

be 0.151, 0.088 and 0.79, respectively. The clear superiority of cage traps over leg-hold traps goes234

against our expectation of the order of efficiency to be ground leg holds, raised leg holds and cage235
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traps, respectively.236

The mean and 95% credible interval for the τ parameter were 2.05 and 1.87-2.24, respectively237

(Table ??). This indicated that the possums became trap shy subsequent to previous captures.238

Despite the compensatory inverse effect of g0 with σ , the probability of capturing a randomly239

located possum by a large array of traps increased with increasing σ (Fig. ??). The rate of240

increase in the probability of capture was highest at the low range of σ , particularly with a high241

trap density (2.15 traps ha−1; Fig. ??A). To illustrate, the mean nightly probability of capturing a242

possum in the high density array of traps increased from 0.39 with a σ of 27 m to 0.73 with a σ of243

100 m.244

At the lower range of home range sizes, small increases in σ increased the potential number of245

traps that a randomly located possum may encounter. Whereas for large home ranges there is a246

relatively high number of traps that could be encountered, but the probability of encountering and247

interacting with traps far from the home range center is low, resulting in the dampening of the rate248

of increase in the probability of capture. For small σ values, the credible intervals around the249

probability of capture are very wide because the random location of the home range center is250

important. With small home ranges, there may be few or no traps encountered. Or, if the random251

location was close to a trap, the combined low σ and associated high g0 would result in a high252

probability of capture. With high σ values the random location of the home range center is not253

important, as all traps close to the home range center could be encountered, which drives the254

credible intervals towards the mean capture probability.255

The differences in g0 for a single trap is small for the three trap types (Table ??). However, when256

an array of traps is deployed and a possum has the chance of being caught in one of many traps,257

the additive effect of a more efficient trap becomes very important (Fig. ??B). The differences in258
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the probability of capture among trap types increases with increasing σ , because animals with259

larger home ranges will likely encounter more traps.260

Discussion261

Estimated parameters from spatially explicit detection models have been useful in modelling262

management and eradication of invasive animals (????). Selection of appropriate parameter263

values should begin with an understanding of the ecology of the system. Our results show that264

population density had the biggest influence on home range behaviour for possums, whereas265

habitat had a minor effect. While some habitats are inherently more resource-rich than others, and266

food resource availability is an important determinant of herbivore density (???), other factors,267

such as population control, predators or disease, may reduce density below expected levels. For268

invasive species such as possums in New Zealand, changes in home range behaviour following a269

reduction in population density can occur within weeks (?). This presents a challenge for270

modelling the capture/detection process of managed invasive species, particularly when271

modelling outcomes are intended to guide management programmes spanning several years as272

opposed to a one-off pulse of control. Stochasticity should be incorporated into the selection of σ273

to account for uncertainty in density and for the observed inter-individual variability, which was274

substantial in this study (Fig. ??). The maximum probability of detection parameter (i.e., g0)275

should be subsequently derived from a predictive model, such as eq. ??. Because of its inverse276

relationship with σ , g0 should not be drawn from a independent distribution (e.g., beta).277

The additive effects of arrays of multiple traps magnifies the seemingly small differences in trap278

efficiency across trap types, especially with large σs (Fig. ??). The finding in this study that cage279

traps were more efficient than leg-hold traps should be confirmed by further field studies. The280
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clear superiority of cage traps over leg-hold traps goes against our a priori expectation of the281

order of efficiency to be ground leg holds, raised leg holds and cage traps, respectively.282

Three events have to occur for a trap to capture an animal, and each has an associated probability283

of success. First, the animal has to encounter the trap, then it has to interact with it, and lastly the284

trap has to successfully restrain the animal. The probability of animal-trap encounter should be285

equally likely across trap types if similar lures are applied. For possums, cage traps are thought to286

have a low probability of interaction given an encounter because the animal has to go into an287

confined unfamiliar enclosure. Leg-hold traps can be hidden in the leaf litter (if they are not288

raised) and are expected to have a higher probability of interaction than cage traps, but may be289

more susceptible to miss firing and not restraining the animal. That is, cage traps may have a290

superior probability of successful restraint given an interaction than leg-hold traps, which291

outweighs its relatively low probability of interaction given an encounter.292

This study and spatially explicit capture recapture studies are not able to account for animals that293

will not interact with a trap. This risks biasing the density estimates, but our σ and g0 estimates294

remain robust as they were largely determined from the GPS and trapping data of detected295

individuals. Camera traps can potentially be used to detect trap-shy individuals, since they do not296

have to interact with the device. However, they do require the animal to approach the unfamiliar297

device and pass through a narrow detection field. There is also the potential for camera298

malfunction.299

In conclusion, the application of these results to predictive modelling of invasive species should300

differ depending on whether the objective is sustained control or eradication. Modelling sustained301

control strategies should account for individual variability in home range size by stochastic draws302

from the expected σ distribution (i.e. using eq. ??; ?). Variation in σ will subsequently influence303
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the probability of capture of individuals (Fig. ??) and the required trapping/detection effort.304

Eradication operations must target the most difficult individuals to detect or remove (?). Given305

the rapid increase in the probability of capture with increasing σ (Fig. ??), the lower end of the306

expected distribution of σ should be used for eradication attempts. When an eradication program307

is conducted over an extended period, one might expect home range size to increase with308

decreasing population density (???). However, some individuals may still maintain small home309

range areas (i.e., individuals with low σ at low population densities; Fig. ??), and these are the310

ones that must be targeted in eradication operations. The cost of eradication is very high because311

of the difficulty in removing these last difficult-to-detect individuals (?).312

Supplemental Material313

Data, computer scripts and detailed information on individual possums:314

https://doi.org/10.7931/0kpk-ba78315
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Tables323

Table 1: Study sites, predominant habitat, trap type, mean (standard deviation) of density (D,
possums ha−1), σ (m) and g0. The percentage of habitat cover varied across individuals within a
site (see Appendix S1 in Supplemental Material), therefore the predominant habitat may not apply
to all individuals.

Site Habitat Trap type D σ g0

Aldingaa,b Grassland Ground leg 0.82 (0.02) 160 (48.4) 0.08 (0.04)
Muzzlec Grassland Ground leg 0.62 (0.01) 136 (72.6) 0.16 (0.13)
Catlinsd Grassland Cage 1.23 (0.07) 111 (62.7) 0.15 (0.09)
Claverlyd Scrub Ground leg 0.27 (0.02) 235 (47.7) 0.03 (0.02)
Leaderd Grassland Cage 1.29 (0.05) 62 (5.1) NA
McQueens Valleye Forest Cage 1.96 (0.11) 109 (38.2) 0.15 (0.09)
North Taupo 3d Grassland/Forest Cage 0.36 (0.03) 162 (70.5) 0.09 (0.05)
Orari Gorgee Forest/Grassland Cage 1.06 (0.08) 69 (15.1) 0.15 (0.04)
Puhi Puhi Peakse Scrub Cage 3.24 (0.2) 182 (57.8) 0.07 (0.04)
Haupirif Forest Raised leg 4.66 (0.33) 74 (28.6) 0.19 (0.08)
KmwaNonvaccineg Forest Ground leg 0.91 (0.05) 111 (42.9) 0.11 (0.07)
KmwaVaccineg Forest Ground leg 3.61 (0.20) 53 (13.7) 0.27 (0.09)
Orongorongoh Forest Ground leg 7.53 (0.41) 58 (25.6) 0.29 (0.15)
Tihoi 3Ai Forest Ground leg 0.12 (0.01) 226 (21.4) 0.03 (0.01)
Waihekef Forest Raised leg 4.64 (0.23) 93 (27.3) 0.15 (0.07)
Waikiti Hutf Forest Raised leg 4.47 (0.25) 125 (65.9) 0.11 (0.08)
Wanganuif Forest Ground leg 3.74 (0.21) 77 (24.6) 0.18 (0.08)
Whataroaf Forest Ground leg 4.82 (0.31) 78 (39.2) 0.21 (0.14)
a ?
b ?
c ?
d ?
e ?
f ?
g ?
h ?
i ?
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Table 2: ∆DIC for models that varied in covariates in the GPS location data sub-model (eq. ??).
The trap outcome sub-model (eq. ??) covariates of σi j, RaisedLegm and GroundLegm were in-
cluded in all models.

Covariates in model ∆DIC

pForest +Female+ Juvenile 0.82
pScrub+Female+ Juvenile 0.94
pGrass+Female+ Juvenile 0.97
pGrass+ pScrub+Female+ Juvenile 1.55
pGrass 0.0
Female+ Juvenile 1.42
Intercept only 2.08

324
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Table 3: Means and 90% credible intervals of model coefficients and associated equation numbers
for the model with the lowest ∆DIC.

Coefficient Equation Mean 5% CI 95% CI

β Intercept 4 5.009 4.837 5.184
β pGrass 4 -0.170 -0.352 -0.010
E Variance of ln(σ) 2 1.195 1.081 1.330
α Intercept 8 5.991 4.343 7.523
α ln(σ) 8 -1.675 -1.978 -1.334
α Raised leg 8 -0.738 -1.271 -0.229
α Ground leg 8 -0.617 -1.024 -0.209
τ 7 2.055 1.851 2.287
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Figure Legends325

Figure 1 – Directed acyclic graph of hierarchical model. Data are enclosed in rectangles,326

estimated parameters are in ellipses and direct predictions are not enclosed. Yi jmt is the trapping327

outcome data for possum i at site j in trap m on night t. The Zi jt are the GPS location eastings and328

northings. The parameters at the lowest level influence the estimates of g0,i jm, σi j and the329

trapping outcome data
(
Yi jmt

)
. Priors are not shown.330

Figure 2 – The σ values (points) for 180 collared possums decreased with increasing population331

density. The mean predicted σ value across age-sex classes, habitat types and a range of332

population density values is shown with the solid black line. Vertically aligned points represent333

individuals from the same site and population density.334

Figure 3 – The predicted g0 values for individual possums (points) and the modelled mean (solid335

black line), averaged across the three different trap types and individuals.336

Figure 4 – (A) The probability of capture of a single possum with a home center located randomly337

within a large array of traps set at three different trap densities. The g0 was calculated using the338

mean value across the three trap types. (B) Using the a trap density of 0.58 traps ha−1, the339

probability of capture of a single possum is shown for the three different trap types. The solid and340

dashed lines are the predicted means and 95% credible intervals, respectively.341
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Figures342
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Figure 2
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Figure 3

24



g0 and σ modelling

Figure 4
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