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Summary 

Project and client 

Manaaki Whenua – Landcare Research (MWLR) was contracted by the Ministry for the 
Environment to conduct research into products and methods for mapping two difficult-to-
map wetland types: ephemeral wetlands and wetlands in pasture. 

Objectives  

• Research and develop methods to assist the national mapping of wetlands, 
particularly: 
• map ephemeral (mainly kettle-hole) wetlands in the central South Island glacial 

geomorphology area, within the Canterbury region. 
• research and develop methods that assist the mapping of wetlands in pasture. 

• Develop robust methods for national-scale mapping. 

Methods 

We trialled three methods: 

• wetness-based mapping of ephemeral wetlands using indices derived from 
Sentinel-2 satellite and aerial imagery 

• detecting ephemeral kettle-hole wetlands in Sentinel-2 satellite imagery using a 
deep learning model trained on three mapped areas in Canterbury 

• detecting pastoral wetlands in Sentinel-2 satellite imagery using a deep learning 
model trained on the Whangape catchment in Waikato. 

Each method was evaluated by visual inspection against Sentinel-2 RGB images, rural 
aerial imagery, and maps of known wetlands. 

Results 

• A process-based water classification model was developed that used 10 m Sentinel-2 
imagery to generate the most comprehensive and spatially detailed surface water 
map to date, and to map a variety of water bodies, including lakes with different 
colours, braided rivers, ephemeral ponds, and irrigation basins. These layers could be 
further trained to detect specific types of water bodies, such as small, vegetated 
ponds. A deep learning model was also trained that could detect very small water 
bodies from 30 cm aerial imagery. 

• A deep learning model trained on mapped areas in the Lake Coleridge and Ashburton 
Lakes areas successfully detected previously mapped, similar wetlands across the 
central South Island glacial geomorphology (CSIGG) area, but also detected 
unmapped wetlands in this area from Sentinel-2 10-band imagery and monthly 
wetness layers derived from Sentinel-2 imagery. Precision appears to be high in alpine 
areas, but lower in areas dominated by cultivated land, including forestry. 
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• A deep learning model trained on the extensively mapped Whangape catchment 
(using the same process as was used to map ephemeral wetlands in the CSIGG) 
detected pastoral wetlands in this area with good recall and precision. The model 
appears to generalise well to similar terrain across the north Waikato and Auckland 
regions but is less accurate where the terrain or ground cover substantially differs, 
such as in south Waikato, and on flat, cultivated areas in mid-Waikato. 

• These models can be used to generate polygons filtered by wetland probability and 
size, which could be triaged by mappers and then used to indicate the location and 
approximate size and shape of potential wetlands for manual mapping. 

Conclusions 

• We generated a prototype layer councils can use to create candidate wetland 
polygons, which will help with manual inspection and delineation tasks. 

• The deep learning-based water detection mask using high-resolution aerial 
photography adds fine-scale water features to the data set, and can be used as a 
mask to constrain the frequency layer and reduce false predictions over forests and 
other land-cover types. 

• Both layers are useful beyond wetland applications and proved stable for many 
different water body types, including braided rivers, streams, ponds, kettle holes, 
lakes, and coasts. 

• The deep learning model trained on mapped wetlands in the Lake Coleridge and 
Ashburton Lakes areas generated an ephemeral wetland layer for the CSIGG that may 
be useful for mapping ephemeral wetlands in this area. 

• The deep learning model trained on the Whangape catchment appears to be 
reasonably predictive of potential pastoral wetlands and might be a useful additional 
tool for finding this wetland type. The model also appeared to transfer quite well to 
similar terrain in the Auckland region, demonstrating that it might be useful for other 
parts of the country with similar land cover and terrain.  

• These products do not automate the mapping of wetlands, but they can be used by 
mappers to quickly identify potential wetlands down to sizes of less than 1 ha, which 
are then manually mapped. We hope that by combining the products with existing 
imagery and mapping techniques, it may become more feasible and cost-effective to 
extensively map wetlands. 

• Although this research focused on two case studies – ephemeral wetlands in the 
CSIGG and pastoral wetlands in the Waikato region – the same approaches are 
potentially applicable to other regions and wetland types. 

Recommendations 

• Assess the accuracy and usefulness of the products developed in collaboration with 
council staff, including an assessment of which (if any) apparent false positives (i.e. 
detected areas that are not kettle hole ephemeral wetlands (in the CSIGG) or pastoral 
wetlands (in the Waikato region) are useful for detecting and mapping other types of 
wetlands. 
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• Extend the water frequency layer to all Sentinel-2 satellite imagery for the period 
2016-2024. 

• Experiment with turning the water frequency layer into a classification map 
(permanent water, seasonal wetness, one-off/flooding events). 

• Extend the deep learning training areas to include a greater range of land cover and 
terrain. 

• Add further inputs to the deep learning models, including aerial imagery and 
synthetic-aperture radar (SAR). 

• Increase the deep learning training data time series by adding more seasonal images 
within the year studied, and potentially multi-year imagery, where possible. 

• Carry out further tuning of the model training processes, including trialling alternative 
methods of modelling temporal change. 
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1 Introduction 

Wetlands are important, rare ecosystems that provide a plethora of ecosystem services, 
including habitat provision for native flora and fauna, nutrient and water recycling, and 
cultural and socio-economic benefits (Johnson & Gerbeaux 2004). They are mainly 
threatened by human activities disturbing water levels and damaging vegetation, with 
over 90% of wetlands in New Zealand lost since European settlement (Ausseil et al. 2011). 
To protect these critical ecosystems, we need basic information on wetland locations, and 
accurate mapping of their extents and types.  

Regional councils are required by the National Policy Statement for Freshwater 
Management 2020 (NPS-FM) to map wetlands and assign them a wetland type. However, 
mapping small and seasonally changing types, such as ephemeral wetlands, is a 
technological and pragmatic challenge at regional to national scales in New Zealand. 

Previously, technical guides were developed to delimit wetland extent, both manually via 
desktop methods (MfE 2024) and in the field (Clarkson 2014; Fraser et al. 2018; MfE 2021, 
2022). Experts with knowledge in ecology, geomorphology, and botany are needed to 
accurately delineate wetlands and assign their type. This manual process is expensive and 
time-consuming, so any assistance with the manual mapping process would reduce the 
resources needed to achieve the mapping required by the NPS-FM.  

This research investigates using remote-sensing methods to generate GIS layers that may 
assist with mapping difficult wetlands. We focus on two types of wetlands: ephemeral 
wetlands (particularly kettle-hole wetlands; see Johnson 2003), and pasture-dominated 
wetlands, both of which were identified by stakeholders as problematic to map. A third 
difficult wetland type – forested wetlands – was excluded owing to the lack of visibility of 
the wetlands in readily available remote-sensing data, such as satellite and aerial imagery. 

2 Background 

The primary focus of this research is ephemeral wetlands. These have seasonally changing 
water levels and may only be partially inundated for a short period of the year, or every 
few years, making them difficult to observe in imagery. 

Similarly, pastoral wetlands are often visually indistinguishable from other vegetation 
types most of the time, especially in low-resolution imagery such as 10 m Sentinel-2 
satellite data. They are, however, often distinguishable by their seasonal variation.  

This research focuses on two complementary approaches to detecting wetlands: 

• wetness-based mapping: temporal changes in wetness are derived from 
imagery and used by the mapper to indicate potential wetlands 

• image-based mapping: potential wetlands are detected from imagery, including 
the wetness layers as additional image bands, and the resulting detections are 
used to guide the mapping process. 
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These two approaches are now described. 

2.1 Wetness-based mapping 

This part of the research focuses on ephemeral wetlands. The main idea is to compress the 
Sentinel-2 satellite time series from a whole year to just one layer that carries information 
on how often certain areas were inundated. We apply state-of-the-art techniques in 
remote sensing and machine learning (including deep learning), analysing both temporal, 
medium-resolution satellite data and high-resolution aerial photography to generate 
candidate areas of potential locations and extents of ephemeral wetlands.  

We aim to stay as close as possible to empirical observational data and a physical 
understanding of temporal patterns in ephemeral wetlands, thereby supporting manual 
inspection and interpretation. The overall workflows are designed to be transparent and 
reproducible, with opportunities for improvement at later stages, where appropriate. 

2.2 Image-based mapping with deep learning 

While both pastoral and ephemeral wetlands are often visually indistinguishable from 
other vegetation types, especially in low-resolution imagery such as 10 m Sentinel-2 
satellite data, they are often detectable from their seasonal variation in appearance. We 
used deep learning to exploit this fact by training a deep learning encoder-decoder model 
to process a temporal stack of images to detect potential wetlands. 

Deep learning encoder–decoder networks translate one image to another, where the 
second image is generally less complex than the first. The network is trained by repeatedly 
applying it to pairs of input and output images, and incrementally adjusting the model’s 
parameters to gradually improve overall performance on the task. This approach can be 
readily applied to wetland mapping by training the encoder–decoder network on pairs of 
wetland polygons (converted into an image) and remote-sensing imagery such that the 
model learns to transform the imagery into a wetland map. The model is trained on a 
subset of the area of interest where wetlands of the target type have been extensively 
mapped. The model is then applied to the rest of the area.  

Deep learning networks typically produce a semantic raster, where each pixel represents 
the class of the corresponding image pixel (e.g. wetland/not wetland). However, the model 
can also generate a probability raster, where each pixel’s intensity represents the model’s 
confidence that it is of the target class (e.g. ephemeral wetland). This provides a richer 
evaluation of the likelihood that an area is a wetland and can be more sensitive to areas 
where the visual evidence is weak. 

As well as learning to perform the mapping task, encoder–decoder networks can 
potentially improve on the original map if there are errors; this is because these errors 
contradict the general patterns learned, and so are ignored during training but corrected 
when the model is run over the same imagery. This approach has the potential to discover 
additional wetlands within the same area as that used for training, allowing areas that 
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have been incompletely mapped to be used for training provided the level of 
error/omission is not too severe. 

We explored using deep learning encoder-decoder networks to transform temporal 
image stacks into probability rasters that suggest candidate ephemeral wetlands. We then 
extended the approach to include mapping pastoral wetlands, on the assumption that 
temporal changes occurring in these wetlands and the surrounding pasture could be used 
to detect them. 

3 Objectives 

• Research and develop methods to assist the national mapping of wetlands, 
particularly: 
• map ephemeral (mainly kettle-hole) wetlands in the central South Island glacial 

geomorphology area, within the Canterbury region 
• research and develop methods that assist the mapping of wetlands in pasture. 

• Develop robust methods for national-scale mapping. 

4 Methods 

4.1 Data preparation 

The experiments described used imagery obtained from processing Sentinel-2 satellite 
data as the main input. In addition, some of the experiments included rural aerial imagery 
and a digital elevation model (DEM). A common source of ground truth for ephemeral 
wetlands was applied across all applicable experiments. Each of these data sources is now 
described. 

4.1.1 Wetland polygons 

Ephemeral wetland polygons 

We used polygons of ephemeral wetlands from in-field observations that had been 
manually digitised for a previous study on ephemeral wetland mapping using multi-
temporal satellite imagery (McMillan & Wiser 2019). These data were collected by Manaaki 
Whenua - Landcare Research (MWLR) and the Department of Conservation (DOC) in 2015 
in Canterbury, New Zealand (Figure 1). 
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Figure 1. Ground-truth ephemeral wetland polygons (in yellow). The larger red polygons 
indicate the boundaries of the areas for which ground truthing was available for this project. 
 

Pastoral wetland polygons 

Wetlands in the Whangape catchment were mapped in 2021 by MWLR in a desktop 
exercise, using Waikato rural aerial photos and oblique aerial imagery. These were used as 
training data. Additional wetland polygons were obtained from Waikato Regional 
Council’s consolidated wetland layer and Auckland Council’s ecosystem layer, and these 
were used for testing purposes. Figure 2 shows the extent of the mapping. 
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Figure 2. Mapped wetlands in the Waikato (yellow boundary) and Auckland regions (left) 
and the Whangape catchment (orange boundary, right) over a Sentinel-2 RGB mosaic. 
 

4.1.2 Satellite imagery 

Daily satellite imagery for wetness-based detection 

We collected all Sentinel-2 (A & B) images (i.e. orbit passes) available for New Zealand 
from 2020 and 2021 and created reconstituted daily images of complete individual orbits. 
The ground pixel size of the Sentinel-2 bands in the visible spectral range (B2/B3/B4) and 
near-infrared range (B8) is all 10 × 10 m (Drusch et al. 2012). The red edge and short-wave 
infrared bands, which both have 20 m pixels, were sharpened by oversampling to 10 m 
pixels using local correlation against the 10 m resolution bands (Dymond & Shepherd 
2004). 

Spectral band data (Table 1) were then processed to standardised reflectance; i.e. the 
spectral reflectance the surface would have on flat terrain with the sun and satellite in 
standard positions (nadir view for the satellite and a solar elevation of 50⁰), using the 
algorithms described in Dymond & Shepherd 2004). 
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Table 1. Sentinel-2 bands used in this study: indicative central wavelengths and bandwidths 
for Sentinel-2 A & B bands 

Band Short name Wavelength Bandwidth Spatial resolution 

2 Blue 492 nm 66 nm 10 m 

3 Green 559 nm 36 nm 10 m 

4 Red 664 nm 31 nm 10 m 

5 Red-edge 1 704 nm 15 nm 20 m 

6 Red-edge 2 740 nm 15 nm 20 m 

7 Red-edge 3 782 nm 15 nm 20 m 

8 NIR wide 832 nm 106 nm 10 m 

8A NIR narrow 864 nm 21 nm 20 m 

11 SWIR 1 1,612 nm 92 nm 20 m 

12 SWIR 2 2,202 nm 180 nm 20 m 

Source: Drusch et al. 2012. 
 

Cloud masks were generated by running a single-image cloud detection method called 
Fmask (Zhu & Woodcock 2012; Zhu et al. 2015; Qiu et al. 2019), which feeds into a multi-
temporal cloud detection algorithm called Tmask (Zhu & Woodcock 2014). Because the 
resulting pixel-wise cloud mask layer still contained artefacts of false positive cloud and 
shadow pixels, we then ran an algorithm that also looks at the approximate likely cloud–
shadow distances (based on sun azimuths) to remove segments without a corresponding 
cloud/cloud-shadow partner. In addition, the Sentinel-2 cirrus band was used to mask out 
very thin, faint, cirrus clouds, which may have an impact on the calculation of spectral 
vegetation indices.  

Finally, the cloud and cloud-shadow segments were smoothed and filled with a 
generalisation algorithm using multiple morphological operations. (Our Sentinel-2 pre-
processing and cloud detection workflow is described in Belliss et al. 2019 and Shepherd 
et al. 2020.) The number of valid observations per ground pixel varies greatly across the 
country, mainly due to satellite orbit patterns and overlap regions (more observations), 
and frequent cloud cover in mountainous areas (fewer observations).  

Monthly satellite imagery for image-based detection 

For the image-based modelling, images were generated for specific months of the year 
using a similar process. The mosaics were further processed by replacing all cloud-affected 
areas with the best possible imagery from alternative tracks from the same month where 
the affected area was the clearest. First, the cloud (and cloud shadow) affected areas were 
identified. The cloud-affected area was then cut out of the mosaic and replaced with the 
same portion of the alternative image. Finally, the mosaic was ‘flattened’ by minimising the 
shading effects arising from topology, giving an image that attempts to best represent 
purely land-cover texture. 
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4.1.3 Aerial photography 

High-resolution aerial imagery at 30 cm pixel resolution with red-green-blue-infrared 
(RGBi) channels was collected for Greater Wellington1 and Hawke’s Bay.2 Individual image 
tiles were merged to form a large mosaic for each region and stored as an 8-bit unsigned 
Byte-type (0-255 pixel values), four-band raster image in the efficient KEA-format (Bunting 
& Gillingham 2013). 

4.1.4 Slope information 

We used elevation information from the New Zealand 8 m digital elevation model (DEM) 
published by Land Information New Zealand (LINZ) and available online.3 We re-gridded 
the DEM to the Sentinel-2 10 × 10 m pixel resolution and calculated a slope map for the 
country using the GDAL gdaldem tool.4 

4.2 Wetness-based detection of potential ephemeral wetlands  

4.2.1 Time series behaviour of ephemeral wetlands 

The main assumption of this research is that periodic changes in ephemeral wetlands are 
observable in the time series of spectral information from the Sentinel-2 satellite sensor. 
We investigated the temporal patterns of several ground truth polygons and studied 
spectral indices that are sensitive to changes in vegetation information and moisture 
content. One popular index is the Normalized Difference Vegetation Index (NDVI) (Rouse 
et al. 1974 and Tucker 1979). Its values typically range from -1 to +1 with very high values 
correlating with dense, healthy vegetation and very low values relating to water or land 
absent of vegetation. We generated time series plots of NDVI based on the daily images 
available for the period of 2016-2021 for samples of wetland and non-wetland areas, and 
visually inspected them for patterns that could be used to inform classification decisions. 

4.2.2 National water frequency mapping 

The overall workflow process to generate temporal water frequency maps includes five 
stages: data preparation → training data → classification model training → prediction → 
summary statistics, which are described in the following sections. 

Satellite data preparation 

We used our internally established Sentinel-2 archive of daily analysis-ready satellite 
images for the year 2021. The individual daily images were atmospherically corrected, 

 

1 https://data.linz.govt.nz/layer/105727-wellington-03m-rural-aerial-photos-2021/ 
2 https://data.linz.govt.nz/layer/110466-hawkes-bay-03m-rural-aerial-photos-2021-2022/ 
3 https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/ 
4 https://gdal.org/programs/gdaldem.html 

https://data.linz.govt.nz/layer/105727-wellington-03m-rural-aerial-photos-2021/
https://data.linz.govt.nz/layer/110466-hawkes-bay-03m-rural-aerial-photos-2021-2022/
https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/
https://gdal.org/programs/gdaldem.html
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cloud- and shadow-masked, snow/ice reduced, and screened for invalid data. We reduced 
the number of spectral bands to the ones that are sensitive to water absorption (i.e. 
Sentinel-2 band 2 in the blue spectral region, centred at around 492 nm; band 3 in the 
green spectral region, centred at around 559 nm; and band 8 in the near-infrared spectral 
region, centred at around 832 nm). Three-band composite images in this band 
combination were created for further analysis. 

Training data 

We manually created two point data sets in a Geographical Information System (GIS) 
comprising 1,161 points over different water bodies visible in Sentinel-2 imagery and 
1,445 points over land and forested areas (Figure 3). We carefully selected Sentinel-2 
summer scenes between 2016 and 2023, making sure the water and land point locations 
were clearly visible. We then extracted spectral signatures of the Sentinel-2 pixel closest to 
each point location. We decided against averaging spectral values within a buffer region 
around each location because we plan to apply a pixel-wise classifier at the original 
10 × 10 m Sentinel-2 resolution. 

 

Figure 3. Pseudo ground-truth water (blue) and land (orange) point data manually created in 
a GIS software. 
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Water detection model training 

We trained a logistic regression classifier model (Cox 1958; Hosmer et al. 2013) using the 
Python-based Scikit-learn toolkit (Pedregosa et al. 2011). Logistic regression is a simple, 
fast, supervised machine-learning algorithm ideal for binary classification tasks of large 
data sets. We trained a water/land model using standard settings: 

• penalty: L2 
• dual: False 
• C: 1 
• class_weight: none (all classes are have weight one) 
• fit_intercept: true 
• intercept_scaling: 1 
• max_iter: 1,000 
• multi_class: auto 
• solver: lbfgs tol: 0.0001.  

To speed up computation we used the Intel(R) extension for scikit-learn.5 The model 
accuracy of 0.943 (±0.032) was estimated using repeated five-fold cross-validation with 
stratified random sampling. 

Prediction 

The trained classification model was then applied to each Sentinel-2 orbit pass (c. 360 per 
year). Overall, water is detected well, but many false predictions are made in steep terrain, 
as this is often affected by shadow or snow and can look spectrally similar to some water 
surfaces. To combat this issue, we used a slope map derived from the LINZ 8 m DEM as 
mask, with a slope exclusion threshold of ≥10°. Thus, the water body detection is only 
applied to pixels in relatively flat terrain. Some false positives remained, which can be 
screened out during the (manual) wetland mapping process.  

Water frequency summary statistics 

The water classification was applied to each daily image in 2021. We stacked all water 
masks for that year on top of each other and summed the number of water observations 
at the pixel level for each month, and then summed the monthly water pixel counts over 
the year. All computations were performed separately for the South Island and North 
Island. 

4.2.3 Water body detection in high-resolution aerial imagery 

The medium resolution of the Sentinel-2 optical sensor at 10 × 10 m ground pixel size 
restricts the minimum size of water bodies that can be detected. It is therefore expected 

 

5 https://github.com/intel/scikit-learn-intelex 

https://github.com/intel/scikit-learn-intelex
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that small water surface features such as streams or ponds may not be detected using 
Sentinel-2. To overcome this issue, we ran a parallel experiment to test whether water can 
be detected directly from high-resolution 30 cm aerial photography using a deep learning 
encoder-decoder network. 

Training data 

We hand-delineated 1,870 training polygons covering different types of water bodies, 
including streams, rivers, wetlands, ponds, lakes, kettle holes, and irrigation systems 
(Figure 4). We paid close attention to including different water body colours, sizes, and 
shapes. The training data were collected in the Greater Wellington region (30 training 
areas with 949 training polygons) and Hawke’s Bay (24 training areas with 921 polygons). 
We also included true negative areas with no water coverage. The aerial RGBi imagery was 
then split into 512 x 512 pixel square tiles within each training area. A random sampling 
approach was conducted, splitting the image and labels into 80% training and 20% 
validation sets. 

 

Figure 4. Manual labels for the deep learning water detection model. Training areas (red 
boxes) and water body polygons (blue-filled polygons) were created in Greater Wellington 
and Hawke’s Bay. 
  

 

  

   

Figure 1. Manual labels for the deep learning water detection model. Training areas (red 
boxes) and water body polygons (blue-filled polygons) were created in Greater Wellington  
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High-resolution water detection model 

We trained a U-Net-type CNN model (Ronneberger 2015) with a Resnet101 encode 
backbone pretrained on the ImageNet data set, using the PyTorch framework with focal 
loss and gamma = 2, a batch size of 32, a learning rate of 0.0001, and the following 
augmentations: horizontal and vertical flip, transpose, rotate90, shift-scale-rotate, and 
brightness+contrast stretch. We trained the model until the validation loss and accuracy 
reached their maximum and stabilised. 

4.3 Image-based detection of potential wetlands 

4.3.1 Detecting kettle-hole ephemeral wetlands using deep learning  

We conducted some initial experiments to see whether ephemeral wetlands could be 
detected at all using a model trained on the limited number of kettle-hole wetlands 
mapped in Canterbury by DOC and MWLR (McMillan & Wiser 2019) and tested on the 
same data set.  

We trained a U-Net model using the kettle-hole wetland polygons and imagery from the 
Sentinel-2 10-band, 10 m mosaic for September 2020. The images were tiled into 384 
256 × 256 pixel images, of which 50% were randomly selected for training, 10% were used 
as a validation set to estimate the model’s performance during training, and the remaining 
40% were withheld for testing. 

There are many ‘hyperparameters’ that can be tuned to maximise the performance of the 
U-Net model. We conducted a limited grid search over the main parameters and settled 
on the following settings: 

• input image size: 256 × 256 pixels 
• number of images in each training batch: 2 
• learning rate (determines the size of each update to the model’s parameters): 

0.0001 
• optimiser: ADAM6  
• length of training runs: up to 100 epochs of 300 batches (each of two images) per 

epoch; i.e. a total of 100 × 300 × 2 = 60,000 image presentations 
• model selection: the model with the lowest loss when tested on the validation set 
• augmentation: the following spatial transformations were applied to the training 

images to reduce the tendency to overfit: 
- randomly flip images horizontally 

 

6 This optimiser automatically adjusts the size of updates to the model’s parameters, based on an approximation 
of the L1 (mean) and L2 (variance) moments of the error. This strategy makes large changes to the model early 
in training, when the mean error is large with respect to the variance, then decreases the change size as the error 
reduces and variance begins to dominate. This automatically throttles back the updates to reduce the likelihood 
of overfitting. 
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- randomly flip images vertically 
- randomly rotate images by 90˚. 

The trained model was used to generate a probability raster representing the likelihood 
that an area is a kettle-hole wetland. We then assessed the model’s success by visually 
comparing the generated raster image to the mapped wetlands for areas excluded from 
the model’s training set. 

Detecting kettle-hole ephemeral wetlands from pairs of Sentinel-2 images 

The appearance of the ephemeral wetlands changes considerably depending on the time 
of year. In McMillan & Wiser 2019, temporal variation in wetness was used to detect 
ephemeral wetlands by calculating wetness variation indices from 5 years of data. For this 
experiment we tested whether the variation in wetness between just two images from the 
wettest and driest months is sufficient to detect kettle-hole wetlands.  Of course, the 
wettest and driest month is variable between years.  

We selected the months of March and September after visually inspecting all monthly 
mosaics for 2020 and 2021 because they consistently showed strong seasonal variation 
and were mostly free of clouds. Figure 5 shows the seasonal variation in appearance of 
kettle-hole wetlands in an area south of Lake Heron in Canterbury. In both years the 
appearance of the wetlands changes significantly between March and September, but 
there are also striking differences between the 2 years, with the wetlands in 2020 being 
more strongly vegetated in summer and less flooded in winter compared with the 2021 
imagery.  
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Figure 5. March (left) and September (right) Sentinel-2 images for south of Lake Heron for 
2020 (top) and 2021 (bottom). Red polygons are mapped kettle-hole wetlands. Black areas 
are open water. 
 

We tested this approach by training a U-Net model on stacked pairs of March and 
September images and then comparing the results to those generated by the previous 
model which was trained on a single summer image. Figure 6 shows an example of the 
detection differences in these two: the model that uses only one image (centre) performs 
poorly, with relatively low detection and a high false positive rate, while the two-image 
model (right) has a significantly higher detection rate with fewer false positives. 
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Figure 6. Comparison of single-image and two-image predictions. Bright areas indicate 
wetland detection; the brighter the area, the higher the probability that it is an ephemeral 
wetland. The white areas outside the red-outlined polygons are false positives (areas not 
mapped as ephemeral wetlands). 
 

The two-image model was then refined and used to generate predictions over larger areas 
to gauge how well the approach performs. In the original McMillan and Wiser study, an 
area 6 km × 9 km was used to test the models. Figure 7 shows the Sentinel-2 image from 
March 2021 for this area, and the model’s output. 

  

    
  Sentinel-2 image (summer)      Single-image prediction        Two-image prediction 
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Figure 7. Sentinel-2 image (top) and model output (bottom) for the test area used by 
McMillan and Wiser (2019). 
 

We note that the available training data from McMillan and Wiser only covers a small area, 
which limits the likely generalisability of the model. However, the model is clearly 
detecting at least the larger of the mapped wetlands.   
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We also tested the ability of the model to generalise to areas outside the training areas by 
training on two of the three study areas and then observing how well it detects wetlands 
in the third area. Figure 8 shows the prediction for the area south of Lake Heron when 
none of the imagery from this area was used for training. 

 

Figure 8. Model output for area south of Lake Heron. 
 

Incorporation of monthly wetness layers 

Since the predictions from the March and September image pairs were an improvement 
over the single image but still contained substantial numbers of false positives, we tested 
whether adding additional wetness information improves the prediction. This was done by 
including the 12-monthly wetness layers, as described in the previous section. These were 
stacked with the March and September Sentinel-2 10-band images to give a 32-band 
image stack, which was then used to train and test a new U-Net model. 
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Detecting kettle-hole ephemeral wetlands in the CSIGG 

The original aim of McMillan and Wiser (2019) was to map kettle-hole ephemeral wetlands 
in the central South Island glacial geomorphology (CSIGG) area studied in Barrell et al. 
2013. Figure 9 shows the area. 

 

Figure 9. Central South Island glacial geomorphology area, as mapped by Barrell et al. (2013). 
 

We used the U-Net models that produced the most promising outputs to generate 
probability rasters for the entire CSIGG. 

McMillan and Wiser (2019) list the coordinates of known ephemeral wetlands in the CSIGG 
(mostly kettle holes) obtained from the literature; this was used as an initial cross-check to 
visually assess the method’s ability to detect ephemeral wetlands from outside the three 
training areas. We also inspected a sample of areas where potential wetlands were 
detected but are not currently mapped and assessed their veracity.  
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4.3.2 Detecting pastoral wetlands using deep learning 

Wetlands in pasture areas are difficult to identify from remote imagery. However, many 
pastoral wetlands also undergo seasonal changes that can assist their discovery. We tested 
whether the same multi-image approach used for ephemeral wetlands might be used to 
detect pastoral wetlands, using the Waikato region as a test case. 

We had access to an excellent training data set for this. Wetlands in the Whangape 
catchment were extensively mapped in 2023, down to a size of 0.05 ha, which is the 
general minimum size for mapping wetlands under the NPS-FM. We used this area to train 
a U-Net model, again using imagery from the driest (February) and wettest (October) 
months. We also experimented with adding the 12-monthly wetness layers produced in 
the process-based wetland mapping component of this work.  

We tested the model on images from the Whangape catchment that were excluded from 
the training set, and then generated and assessed a prediction for the entire Waikato 
region. Note that this larger prediction includes many areas that are not pastoral and are 
therefore expected to generate false positives. Also, the wetlands already mapped across 
the Waikato are of many different types (including intact peat bog, etc), so we would not 
necessarily expect them all to be detected by the model. We also assessed the model on a 
sample of candidate pastoral wetlands from the Auckland region. 

5 Results 

5.1 Wetness-based detection of potential ephemeral wetlands 

5.1.1 Time series behaviour of ephemeral wetlands 

Figure 10 depicts the NDVI time series for two test areas: one over an ephemeral kettle-
hole wetland and another that is not classified as ephemeral wetland. Overall, the index 
shows similar timings in highs and lows, but with more pronounced extremes for the 
kettle-hole wetland, which could mean that it seasonally filled up with water (very low 
NDVI) in winter but is covered in more vegetation during dry summer (high NDVI).  

We contrasted dozens of such examples, but the absolute values vary substantially 
between wetlands, and the timings are different (i.e. the time of the year when the NDVI 
increases or drops). It was thus not possible to classify ephemeral wetlands using a 
spectral index alone. This also meant that annual median images of Sentinel-2 are not 
useful for identifying wetlands; instead, monthly averages or seasonal maps are needed.  

We also investigated the potential use of Sentinel-1 C-band radar images, but due to the 
inherent radar speckle, individual images were too noisy at these fine scales (<0.1 ha). 
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(a) 

 

(b) 

Figure 10. (a) Example of a kettle-hole ephemeral wetland from the DOC ground-truth data 
(yellow polygon) and a non-kettle-hole polygon area (green polygon) next to it.  
(b) The Sentinel-2 NDVI time series shows strong seasonal behaviour in both time series.  
The extremes in the NDVI are more pronounced for the kettle hole (orange series), with 
minimum close to 0.1 and maximum over 0.6, compared to the non-wetland polygon (blue 
series). 
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5.1.2 National water frequency mapping 

The water classification model was applied to each individual HQ Sentinel-2 image for the 
year 2021. The number of water observations (‘water counts’) at the pixel level was then 
computed monthly and annually, which gives a spatial representation of water and 
inundation frequency for all New Zealand (Figure 11). These layers represent the most 
comprehensive and spatially detailed surface water map created to date, and they map a 
variety of water bodies, including different-coloured lakes, braided rivers, ephemeral 
ponds, and irrigation basins (Figure 12). 

  

Figure 11. Water frequency layer for New Zealand in 2021. The maps show the water counts 
as observed by the Sentinel-2 sensor. Light green and blue indicate fewer water 
observations, and orange and dark red more water counts. 

Notes: Due to overlapping orbits, cloud coverage, and cast shadow (from mountains), the absolute number 
varies for different parts of the country. This uneven pattern is visible in Lake Pukaki.  
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Figure 12. Aerial imagery (left) and overlaid water frequency (right) for different types of 
water bodies. Top panels show permanent lakes Tekapo and Alexandrina (red), as well as 
seasonal ponds (lighter colours). Middle panels shows the Wairio wetland in Wairarapa with 
many seasonally inundated ponds and main flow patterns of the larger lake Wairarapa. 
Bottom panels depict a frequently changing braided Rangitata River and water storage 
basins, which are part of the Rangitata South Irrigation Scheme (RSIS). 

Detecting ephemeral wetlands 
The main objective of this study is to make use of Sentinel-2 water observations to help 
detect ephemeral wetlands. The previous section demonstrated the ability of the 
frequency layer to map permanent, semi-permanent, and short-term water features in 
different settings. Small, ephemeral wetlands are, by nature, hard to spot and delineate. 
Aerial photography and satellite imagery must usually be taken at the right time of the 
year or season to capture ponding behaviour. In contrast, the Sentinel-2-derived annual 
water frequency layer located 210 out of the 506 confirmed ephemeral wetlands from the 
MWLR/DOC ground-truth data set (41%) without special training or optimisation (Figure 
13). 
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Figure 13. Potential use of the water frequency layer to delineate ephemeral wetlands. Left-
hand panels show aerial imagery with some ephemeral wetlands in Canterbury currently 
inundated. Right-hand panels show them identified by water frequency results, 
demonstrating that water frequency is a useful metric to locate and estimate the extent of 
these seasonal wetlands.  
 

Comparing the Sentinel-2 water frequency to aerial photography is not appropriate, 
however, because the photography captures spatial detail at 30 cm pixel resolution 
whereas Sentinel-2 operates at 10 m. The frequency layer is able to map individual clear 
water pixels but still struggles to identify small, vegetated ponds due to spectral mixture 
effects from adjacent pixels. Also, some of the manually identified ephemeral wetlands 
from the ground-truth data sets are not recognised, even though they appear large 
enough. This may be due to the limited time series of the frequency layer, which only 
comprised image dates from the year 2021. Also, most of the MWLR/DOC polygons were 
drawn in earlier years dating back to 2015 (see McMillan & Wiser 2019), so some may be 
gone or were not inundated in 2021. 

Figure 14 demonstrates that the frequency layer successfully detects the ground-truth 
polygons, even in situations where the aerial photograph does not show any indication of 
wetlands. 
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Figure 14. Potential use of the water frequency layer to delineate ephemeral wetlands in 
imagery of different spatial resolutions and from different observation platforms (aerial and 
satellite). Top panels show the high-resolution aerial image and ground-truth polygons. 
Middle panels show the same areas with Sentinel-2 imagery. Bottom panels show the 
Sentinel-2 water frequency on the aerial photographs, with many wetlands correctly 
identified. 

Targeted training for small, vegetated ponds 

The Sentinel-2-derived water frequency layer tends to struggle with small, vegetated 
ponds. The classification model is therefore often unable to detect such small ponds in 
certain areas. We tried adding targeted training data (i.e. point locations over small ponds) 
and re-trained the logistic regression model. The new model located small ponds more 
reliably, but was also more prone to false predictions over forested areas with similar 
spectral signatures (Figure 15).  
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Figure 15. Aerial photo (top left) and Sentinel-2 image (top right). The original water 
classifier is unable to detect small, vegetated ponds (middle panel, left). The updated model 
with targeted training data performs better (middle panel, right), but also introduces more 
false positive predictions over forests with similar spectral signatures such as the detected 
areas in the bottom panel. 
 

5.1.3 Water body detection in high-resolution aerial photography 

Model performance 

The U-Net model for detecting water from aerial imagery alone was trained for only 1 
hour and 21 minutes but quickly learned to classify water well. The training accuracy (F1-
score) of water at the highest point was 0.984, together with a validation of 0.961, which is 
extremely high. We stopped the model training after 175 epochs, because no further 
improvement could be observed and overfitting to the training data became stronger 
(Figure 16). 
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Figure 16. U-Net model training curves showing the accuracy and loss for water classification 
in aerial photography over many epochs. The accuracy is very high after 25 epochs and then 
keeps slowly improving until epoch 75, after which no further improvement can be seen. 
 

Prediction quality 

We applied the water detection model to the entire Greater Wellington and Hawke’s Bay 
image data sets and created two corresponding regional water masks (Figure 17). Overall, 
this captures all types of water bodies well, and the spatial detail is much higher than the 
Sentinel-2-based water layer (detailed view Figure 18). 

  

Figure 17. Deep learning-based water mask for Greater Wellington and Hawke’s Bay Regions. 
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Figure 18. Examples of the deep learning-based water mask for Greater Wellington and 
Hawke’s Bay regions showcasing the spatial detail. Top panels depict the Wairio wetland in 
Wairarapa, middle panels show kettle holes and small ponds (locality), and bottom panels 
show complex river systems that are part of the Ngaruroro River in central Hawke’s Bay. 
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5.2 Image-based detection of potential wetlands 

5.2.1 Detecting kettle-hole ephemeral wetlands using deep learning 

Detecting known kettle-hole ephemeral wetlands 

We trained two models and used them to generate a probability raster for each of the 
three study areas. The first model was trained using just the March and September 2020 
Sentinel-2 imagery (‘two-image model’), while the other included the 12 monthly wetness 
rasters (‘combined model’). We visually compared the outputs from the two models to the 
kettle-hole wetlands mapped by DOC and MWLR to assess sensitivity and precision.  

Figure 19 to Figure 21 show outputs for the two-image and combined models for sample 
test images from each study area. In all three cases the combined model has lower 
sensitivity but significantly higher precision (i.e. fewer false positives and more accurate 
wetland shapes). Without an exhaustive map it is not possible to definitively select one 
model over the other; in practice this may depend on how the output raster is used. Both 
models demonstrate that they detect kettle-hole wetlands in new imagery to a reasonable 
degree, at least for imagery taken close in time to the training images. 
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Figure 19. Model outputs for a test image in study area 1 (NZTM 1454443, 5190941). Top: 
2020 Sentinel-2 images for March (left) and September (right). Bottom: predictions for two-
image model (left) and combined wetness model (right). 
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Figure 20. Model outputs for a test image in study area 2 (NZTM 1479898, 5204251). Top: 
2020 Sentinel-2 images for March (left) and September (right). Bottom: predictions for two-
image model (left) and combined wetness model (right). 
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Figure 21. Model outputs for a test image in study area 3 (NZTM 1506496, 5223305). Top: 
2020 Sentinel-2 images for March (left) and September (right). Bottom: predictions for two-
image model (left) and combined wetness model (right). 
 

Detecting kettle-hole ephemeral wetlands in the CSIGG 

We used the two-image and combined models to generate a probability raster for the 
entire CSIGG. Figure 22 shows the prediction for the CSIGG using the combined model. 
This shows that the model has identified a significant number of potential further wetlands 
across the area. There is no complete data set available to test the model because the 
CSIGG has not been extensively mapped, so we again relied on visual inspection of sample 
areas to assess whether the model is likely to be useful. 
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Figure 22. Combined model output for the central South Island glacial geomorphology area. 
Yellow rectangles indicate the areas used for training; red blobs show the locations of known 
ephemeral wetland areas from the literature. 
 

To gauge the level of detection, we inspected known ephemeral wetland locations from 
the literature, as listed in McMillan & Wiser 2019. Figure 23 Figure 26 give some examples 
of the model’s outputs in areas containing known wetlands. Note that black areas in some 
images are where no imagery was available because of cloud cover. 
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Figure 23. Wairepo kettle holes conservation area. Top: Sentinel-2 images for March (left) 
and September (right) 2020. Bottom: predictions for the two-image model (left) and 
combined model (right). 
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Figure 24. South of Lake Ōhau. Top: Sentinel-2 images for March (left) and September (right) 
2020. Bottom: predictions for the two-image model (left) and combined model (right). 
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Figure 25. South of Lake Tekapo. Top: Sentinel-2 images for March (left) and September 
(right) 2020. Bottom: predictions for two-image model (left) and combined model (right). 
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Figure 26. West of Lake Tekapo. Top: Sentinel-2 images for March (left) and September 
(right) 2020. Bottom: predictions for the two-image model (left) and combined model 
(right). 
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Both models show strong detection of the known wetlands. In general, the combined 
model appears to be more sensitive to wetland areas that undergo the most seasonal 
changes but misses some wetlands that remain full of water, whereas the two-image 
model detects these wetlands but also includes a higher level of false positives. This is 
expected given the strong temporal nature of the data used to train the combined model. 

We also inspected areas where the models detected potential wetlands where none were 
previously mapped. Figures 27 to 29 show some examples where both models detected 
potential wetlands in the alpine areas of the CSIGG similar to, but distant from, the three 
training areas. 

  

  

Figure 27. North-east Lake Pukaki (NZTM 1378544, 5130376). Top: Sentinel-2 images for 
March (left) and September (right) 2020. Bottom: predictions for the two-image model (left) 
and combined model (right). 
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Figure 28. South-east Lake Tekapo (NZTM 1402577, 5125730). Top: Sentinel-2 images for 
March (left) and September (right) 2020. Bottom: predictions for the two-image model (left) 
and combined model (right). 
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Figure 29. East of Lake Tekapo (NZTM 1405848, 5135689). Top: Sentinel-2 images for March 
(left) and September (right) 2020. Bottom: predictions for the two-image model (left) and 
combined model (right). 
 

For alpine areas, the combined model appears to accurately capture potential kettle-hole 
wetlands, as well as other wetland types. The two-image model again has higher 
sensitivity but appears to return a significant area of false positives. 

These models were trained on small samples of alpine areas. Once the terrain and 
vegetation change significantly, the model’s accuracy falls. Figure 30Figure 32 show 
examples of the model results on areas with significantly different land cover, land use, 
and terrain. 
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Figure 30. Forestry block between Lake Heron and Lake Tekapo (NZTM 1429024, 5160820). 
Top: Sentinel-2 images for March (left) and September (right) 2020. Bottom: predictions for 
the two-image model (left) and combined model (right). 
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Figure 31. Estuary, West Coast (NZTM 1375151, 5213414). Top: Sentinel-2 images for March 
(left) and September (right) 2020. Bottom: predictions for the two-image model (left) and 
combined model (right). 
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Figure 32. Agricultural land, Mid-Canterbury Plains (NZTM 1453586, 5111179). Top: Sentinel-
2 images for March (left) and September (right) 2020. Bottom: predictions for the two-image 
model (left) and combined model (right). 
 

Both models produce false positives for the non-alpine areas, but this is much less 
pronounced for the combined model: because it was trained on a combination of visual 
and change and wetness variability, it tends to pick up spurious water bodies, whereas the 
two-image model also falsely detects areas of other significant visual change, such as 
changes in management of forestry and agricultural land. In both cases, at least some of 
the false positives could be removed by filtering the raster by land cover / land-use type.  
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5.3 Detecting pastoral wetlands using deep learning 

Detecting pastoral wetlands in the Whangape catchment 

We trained and tested two models using imagery and wetland polygon data for the 
Whangape catchment in Waikato: a ‘two-image’ model consisting of 10-band images for 
February and October, and a ‘combined’ model that included 12 monthly wetness bands. 
The imagery was tiled into 108 256 × 256 pixel images, of which 54 were used for training, 
10 for validation during training, and the remaining 44 held out for testing. 

There was very little difference in performance between the two models. In hindsight this 
could have been expected, because there was very little information in the wetness bands 
for this particular catchment (i.e. wetness was mostly zero, apart from for larger open-
water bodies). The models both converged very quickly, with the combined model 
reaching minimum validation loss after only 16 epochs because of the small training set 
size. Figure 33 shows the accuracy and loss curves for the training and validation sets 
during training.  

 

Figure 33. Model accuracy (left) and loss (right) as training progresses. Blue = training set 
accuracy/loss, orange = validation set accuracy/loss. 
 

The model classified the wetlands in the test set with a per-pixel recall of 72% and a 
precision of 91%. As for the kettle-hole wetlands, the class prediction substantially under-
reports small wetlands because of the high bias in the data (i.e. only around 6% of pixels 
are classified as ‘wetland’). However, inspecting the probability raster shows that the 
model does pick up smaller wetlands, albeit with fairly low probability. Figure 34 shows the 
probability raster generated by the combined model for the Whangape catchment.  
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Figure 34. Pastoral wetland probability raster for the combined model after 16 epochs. 
Yellow line shows the approximate boundary of the Whangape catchment. The intensity of 
the white areas denotes the probability that this area is a wetland (brighter = higher 
probability). 
 

We also tested whether stopping at the epoch with the lowest loss meant training was 
being stopped too early. We generated a probability raster using the model after 69 
epochs of training: at this point the model’s loss fell to almost as low as the lowest loss (at 
epoch 16). However, this model returned a substantially worse probability raster, with a 
high level of false positives. We therefore concluded that using the earlier model with the 
lowest validation loss was appropriate. 

Figure 35 compares the probability raster for the 16-epoch model to 2012 0.5 m aerial 
imagery for a sample of the Whangape catchment test images. 
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Figure 35. Examples of test areas: aerial imagery (left) and probability raster from the 16-
epoch combined model (right). Red polygons are mapped wetlands.  
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Overall, the model appears to detect wetlands in the Whangape catchment quite well. 
Figure 36 shows some examples where the model disagrees with the Whangape mapping, 
particularly false positives. 

  

  

  

Figure 36. Closer view of apparent false positives and false negatives for the parts of the 
areas in the previous figure. Red polygons are mapped wetlands.  

Notes: In all three cases, apparent false positives (white areas outside the mapped polygons) appear in 
depressions that have the potential to be wetlands. The middle raster also contains false positives in a forest, 
as well as at the shore of a water body where the water line varies with time. Some very narrow wetlands in the 
bottom example appear to have not been detected (false negatives).  
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We make the following observations. 

• Many of the apparent false positives are vegetated depressions that could potentially 
be wetlands; others are the changing shoreline of open-water bodies. 

• Forested/wooded areas are sometimes picked up as false positives. 
• The model generally over-reports wetlands; this could be controlled by filtering the 

raster to include only pixels with values greater than a certain threshold. 

Detecting pastoral wetlands across Waikato 

We used the 16-epoch combined model to generate a prediction across the entire 
Waikato region. Because the model was trained for pastoral wetlands only, we used LCDB5 
to filter the map, leaving only areas of the following classes that may contain pastoral 
wetlands: high-producing exotic grasses (class 40), low-producing grassland (class 41), tall 
tussock grassland (class 43), depleted grassland (class 44), herbaceous freshwater 
vegetation (class 45), and deciduous hardwoods (class 68). Figure 37 compares the 
prediction raster before and after filtering. 

  

Figure 37. Pastoral wetland probability raster from the 16-epoch combined model for the 
Waikato region (yellow polygon): raw raster (left) and filtered (right). The small orange 
polygon denotes the approximate Whangape catchment boundary used for training. 
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Figure 38 compares the probability raster with Sentinel-2 imagery for a sample of other 
pastoral areas outside the Whangape catchment where wetlands have also been 
extensively mapped. 

  

  

  

Figure 38. Sentinel-2 imagery and filtered 16-epoch combined probability raster for a sample 
of well-mapped pastoral areas outside the Whangape catchment. Predominant wetland types 
are swamps and seepages. 
 

The model appears to detect swamps and seepages well, including small wetlands (less 
than 1 ha in size) and very narrow wetlands (1-2 pixels wide). 
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Figure 39 compares the probability raster to 2012 0.5 m aerial imagery for a sample of 
areas in north Waikato that contain apparent false positives, but where the terrain is 
similar to the Whangape catchment. 

  

  

  

Figure 39. Aerial imagery and probability rasters for sample areas in north Waikato similar to 
the Whangape catchment. 
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For the areas with similar topography to Whangape catchment, the model appears to 
detect plausible wetlands (i.e. vegetated depressions that look similar to the wetlands in 
the Whangape catchment), although it may also falsely detect wetlands in other vegetated 
areas. In contrast, Figure 40 shows areas with strong detection in south Waikato, where 
the terrain is either undulating or more hilly, the (pumice) soil has different drainage 
properties, or the wetlands are significantly different in appearance (e.g. the swamps and 
fens south of Lake Taupō). 

  

  

  

Figure 40. Examples from south Waikato: aerial images (left) and 16-epoch combined 
probability raster (right). 
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Prediction for the south Waikato areas is fairly poor, with an increase in both false 
positives and missed wetlands. This suggests further training is necessary using mapped 
areas in south Waikato so that the model is exposed to a wider range of terrain and 
vegetation cover. 

Detecting pastoral wetlands outside the Waikato region 

We inspected the probability raster for a sample of the Auckland area to assess the 
potential for the model to extrapolate to areas well outside the training area. As for 
Waikato, we filtered the result to remove non-pastoral areas. Unlike the Waikato region, 
Auckland has relatively few pastoral wetlands mapped. Figure 41 shows how the model 
performs for some examples of pastoral areas in the southern Auckland region. 
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Figure 41. Examples of detection of known wetlands in the Auckland region. 

The model detects some - but not all -of the currently mapped wetlands in pasture, and 
the signal (probability) is generally low. This may be partly because of differences in either 
the vegetation present in the wetlands or the timing of wet and dry periods. We note that 
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the visibly driest and wettest months in 2020 were different for Waikato (February and 
October) and Canterbury (March and September), for example. 

The model also detects many (potential) wetlands that are not currently mapped. Figure 
42 gives some examples of these. 

  

  

  

Figure 42. Examples of potential wetland detection in Auckland where none are currently 
mapped. 



 

- 53 - 

Many of the potential wetlands detected appear very similar to those in Waikato (i.e. 
vegetated valley depressions; Figure 42, top and middle). Others (e.g. Figure 42, bottom) 
are in quite different terrain. In both cases the results should be verified via ground 
inspection or a detailed desktop analysis.  

6 Guidelines for mapping difficult wetlands 

6.1 Mapping ephemeral wetlands using the wetness-based layers 

Both the medium-resolution water frequency layer and the high-resolution water mask 
can be used to locate areas of short-term and permanent water cover. The absolute 
counts of water observations in conjunction with other environmental information (e.g. 
timing within a growing season) can be indicative of ephemeral wetlands. Several rule-
based systems using expert knowledge, timings, and environmental data (such as 
excluding permanent water bodies) are conceivable but were not possible to apply in the 
time available.  

The high-resolution mask adds fine-scale water features and can be easily applied to new 
RGBi imagery when available. The pre-trained model can be either reused or a new model 
trained with additional training data from new imagery. We recommend that image 
capture, such as aerial or drone flights, be targeted to times of the year when ephemeral 
wetlands are most likely to be visible. Unfortunately this is often not when the regional 
aerial photography in New Zealand is acquired. Buffering around small, semi-permanent 
water bodies and intersecting them with vegetation information can be useful for further 
discriminating water body and vegetation types (Figure 43). 

 
Figure 43. Example of vegetation classification (water bodies in cyan, individual trees as 
white dots, tree cover in green, pine in dark green, shelter belts in pink and river network in 
blue). Note: Buffered water area intersected with vegetation types may help categorise water 
and wetland type. 
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6.2 Mapping ephemeral wetlands using the deep learning layers 

The probability rasters generated by the models can be used directly as a visual aid to 
determine areas that might contain wetlands of the type that each particular model 
detects (small water bodies, ephemeral wetlands or pastoral wetlands). For example, the 
raster can be clipped to an appropriate minimum value and rendered using false colouring 
to provide a quick visual indication of likely wetlands. 

Alternatively, the raster can be converted to polygons by thresholding the probability 
raster to generate a wetland mask, converting the areas classed as wetlands to polygons, 
and filtering the resulting layer to remove very small polygons, which are more likely to be 
noise. Figure 44 shows the polygons generated for the CSIGG where the raster was 
thresholded (at probability ≥ 10/255), and the resulting polygons were then filtered (to 
area ≥ 2,000m2), whereas Figure 45 shows the same polygons for the area east of Lake 
Pukaki. At this threshold the CSIGG wetland polygon layer contains around 4,000 
polygons, which is a sufficiently small number to manually inspect and classify as 
wetland/not wetland. The accepted polygons could then be further verified and refined to 
give a final map. 

 

Figure 44. Potential ephemeral wetland polygons for the CSIGG area of size 2,000m2 or 
greater. 
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Figure 45. Example of potential kettle-hole polygons east of Lake Pukaki. 
 

6.3 Mapping pastoral wetlands using the deep learning layers 

A similar approach can be used to map pastoral wetlands. In Figure 46 the wetland 
probability raster has again been thresholded (at p ≥ 10/255) and the resulting polygons 
filtered (to area ≥ 2,000m2). 
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Figure 46. Potential pastoral wetlands in the Waikato region of size 2,000m2 or greater. 
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Figure 47. Examples of candidate wetland polygons in hilly areas. Top: north of Whangape 
catchment (NZTM 1768948, 5860734). Bottom: East of Hamilton (NZTM 1817203, 5821613). 
 

The accuracy of the proposed polygons varies with terrain. For flat, highly cultivated 
farmland the rate of false positives clearly increases significantly, and it may be prudent to 
exclude these areas from consideration. In hilly areas, such as in Figure 47, accuracy is 
likely to be significantly higher. We suggest that the polygons in this area could be used to 
highlight areas to be investigated and potentially mapped by considering the instructions 
below. 
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1 Filter the polygons by size to give a manageable number to check; e.g.: 

• 639,569 unfiltered polygons 
• 285,084 polygons ≥ 500m2 (NPS-FM requirement) 
• 105,863 polygons ≥ 2,000m2 
• 47,852 polygons ≥ 5,000m2 
• 24,600 polygons ≥ 10,000m2 (1 ha) 

2 Quickly scan the polygons and triage them into ‘keep’, ‘discard’, and ‘review’. 

3 Further assess the ‘review’ polygons and reclassify as many as possible into ‘keep’ or 
‘discard’. 

4 For the ‘keep’ polygons, manually map or refine their extent. 

7 Conclusions 

7.1 Wetness-based detection of potential ephemeral wetlands 

Ephemeral wetlands are of high ecological and cultural importance, and it is essential to 
improve mapping of their detection and extent at national scale in New Zealand. Our 
study aimed at providing practical methods and data sets that can be utilised by expert 
practitioners and regional councils.  

We developed a transparent remote-sensing method identifying seasonally inundated 
areas and compared them with ground-truth locations of ephemeral wetlands in 
Canterbury. Many of these wetlands were successfully identified, and we provided 
recommendations for how to target cases that are inherently hard to map (i.e. very small, 
vegetated ponds) from 10 m satellite imagery. We generated a prototype layer that 
councils can use to create candidate wetland polygons, thereby assisting manual 
inspection and delineation tasks. 

The deep learning-based water detection mask using high-resolution aerial photography 
provides a valuable resource in addition to the frequency layer. This high-resolution mask 
adds fine-scale water features to the data set and can be easily applied to new RGBi 
imagery, when available. It can be used as a mask to constrain the frequency layer and 
reduce false predictions over forests and other land-cover types. 

Both layers – the medium-resolution water frequency and high-resolution water mask – 
are useful layers beyond wetland applications and proved stable for many different water 
body types, including braided rivers, streams, ponds, kettle holes, lakes and coast.  

7.2 Image-based detection of potential wetlands 

This small study investigated whether the mapped kettle-hole wetland areas from 
McMillan and Wiser were sufficient to train a model to detect ephemeral wetlands in 
general. The training data set was very small, but the model shows promise, giving 
reasonable sensitivity with a fairly low false positive rate when applied to areas of similar 
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geography across the CSIGG. From the probability raster generated by the model we were 
able to generate a useful polygon layer that could be used to guide mappers to potential 
ephemeral kettle-hole wetlands in the CSIGG. 

We applied the same approach to pastoral wetlands in the Waikato by training a model on 
the well-mapped Whangape catchment. The resulting probability raster appeared to be 
reasonably predictive of potential pastoral wetlands and might be a useful additional tool 
for finding this wetland type. The model also appeared to transfer reasonably well to 
similar terrain in the Auckland region, demonstrating that it might be useful for other parts 
of the country that are similar in nature.  

The resulting outputs, while not sufficiently accurate for automating the mapping process, 
are nonetheless potentially useful for directing council staff to where they might look for 
wetlands. The outputs include some false positives that could be simply masked out since 
they are in areas where the geography does not lend itself to this type of wetland; and 
others, such as other ephemeral and permanent wetlands, that may be otherwise useful to 
the mapping process. 

8 Recommendations 

• The research products described have been visually analysed my MWLR but they have 
not been independently assessed. We recommend an assessment of the accuracy and 
usefulness of the products in collaboration with council staff, including an assessment 
of which (if any) false positives (i.e. detected areas that are not kettle hole ephemeral 
wetlands (in the CSIGG) or pastoral wetlands (in the Waikato region) are useful for 
detecting and mapping other types of wetlands. 

8.1 Wetness-based methods 

It is challenging to capture seasonal, short-term inundated ephemeral wetlands in one-off 
aerial or satellite images because of timing, weather conditions (cloud cover), and 
resolution. The Sentinel-2-derived water frequency layer is able to address two of these 
issues, and even demonstrated the ability to locate wetlands with sizes of less than 0.1 ha. 
Not all ground-truthed polygons were picked up by the automated algorithm, and we do 
not know whether this is due to misclassification in some of the images, no actual 
inundated areas present in the image time series, or misalignment of the ground-truth 
capture date and Sentinel-2 observations in 2021 (some ephemeral wetlands might have 
been lost since their observation in 2016).  

We also identified several shortcomings of the current water frequency layer. First, small 
features may not be visible in the 10 m imagery or are spectrally mixed with surrounding 
vegetation. More focused training that includes these small areas and mixed pixels leads 
to better detection rates, but at the cost of more false predictions over forested areas. This 
may be acceptable if the human GIS analyst is trying to map ephemeral wetlands outside 
forests.  



 

- 60 - 

It is often desirable to work with definite classes rather than absolute water frequencies 
(counts per month or year), which are locally biased due to Sentinel-2 scanning patterns, 
uneven persistent cloud cover, differing levels of atmospheric aerosols, and other factors. 
It is possible to turn the water frequency layer into three classes (e.g. permanent water, 
seasonal, or one-off/flooding events). Calibrating these classes for different water body 
types seems practical but will need to be carefully done, incorporating local knowledge. 
Other auxiliary data sets such as environmental factors and indications of the regional 
growing season are likely to be needed as well. 

We therefore recommend the following extensions: 

• Extend the water frequency layer to all Sentinel-2 satellite imagery for the period 
2016-2024. 

• Experiment with turning the water frequency layer into a classification map 
(permanent water, seasonal wetness, one-off/flooding events). 

8.2 Image-based methods 

For this approach we used a combination of summer and winter Sentinel-2 10-band 
imagery and monthly wetness rasters. There is potential to further improve the modelling 
for both ephemeral and pastoral wetlands. We recommend the following. 

• Extend the deep learning training areas to include a greater range of land cover and 
terrain. 

• Add further inputs to the deep learning models, including aerial imagery and 
synthetic-aperture radar (SAR). 

• Increase the deep learning training data time series by adding more seasonal images 
within the year studied, and potentially multi-year imagery, where possible. 

• Carry out further tuning of the model training processes, including trialling alternative 
methods of modelling temporal change. 
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